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1. INTRODUCTION

2. BEAMSPLITTING IN ADAPTIVE
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Maximum likelihood (ML) parameter estimation for
multi-dimensional adaptive problems is addressed. Mul-
tiple adaptive outputs are ordinarily combined by uti-
lizing the full dimension data. However, many adap-
tive problems utilize subspace processing for each adap-
tive beam which can increase the di�culty of many su-
per-resolution techniques. This paper shows that steer-
ing vector structure can be utilized to allow ML tech-
niques for a �xed grid of hypothesis vectors to be com-
putationally feasible for many scenarios.

Many adaptive array applications now require adaptiv-
ity in multiple dimensions, such as planar arrays or
space-time adaptive processing (STAP) algorithms for
airborne nulling of clutter [1]. Because of the increasing
size of these problems, subspace array processing is often
used to reduce the degrees of freedom with each adap-
tive weight vector often using a di�erent subspace. This
reduces a large dimension problem into many smaller
problems, but it can make parameter estimation more
di�cult. This paper addresses multi-dimensional pa-
rameter estimation using adaptive outputs where each
adaptive output may have been formed from a di�erent
subspace.

When parameter estimation of source locations is
done independently in each dimension of a multi-
dimensional system, the estimates can be heavily bi-
ased. Multi-dimensional parameter estimation has been
shown to provide much more accurate source locations
[2, 3]. Maximum likelihood (ML) source localization [4]
is well understood but is often deemed too computa-
tionally expensive for practical use since the computa-
tional load goes up exponentially with multiple dimen-
sions. Several alternative techniques have been devel-
oped to o�er multi-dimensional parameter estimation,
such as adaptive monopulse radar techniques [2] and a
rooting algorithm [5]. However, these algorithms gener-
ally generally require access to the full dimension data
and are not able to utilize the subspace adaptive beam-
formed outputs. In addition, monopulse techniques rely
on a �rst-order Taylor expansion at the beam center
and are biased away from this point. This paper re-
examines maximum likelihood estimation using these

varied subspace adaptive beamformer outputs. Sec-
tion 2 details the theory behind adaptive subspace ML
multi-dimensional parameter estimation, including sim-
pli�cations when the steering vectors can be decom-
posed as the Kronecker product between vectors in each
dimension. In Section 3, this technique is demonstrated
for an example STAP application to provide e�cient
two-dimensional azimuth-Doppler target localization in
the presence jammer and clutter for an airborne radar
system.

A common model in adaptive processing for radar con-
sists of a data snapshot

= (�)+ (1)

where is the target amplitude and is the steering vec-
tor for the unknown target location parameter �. The
interference and noise component of the snapshot, ,
is assumed to have covariance matrix = .
Typically there are available target free snapshots from

which the sample covariance matrix is estimated. For
this data model the ML estimator for � is [4]

� = argmax
(�)

(�) (�)
= argmax (�)

(2)
where (�) is the AMF weight vector [6]

(�) =
(�)

(�) (�)

(3)

The ML expression of (2) applies equally well when
beamspace processing is used. If the set of beams is

denoted by the matrix , the ML estimator for be-
comes

� = argmax
(�)

(�) (�)
(4)

where the subscript denotes projection onto (i.e.,

= and = ).
In general, we will not have the luxury of computing
(�) for all � hypotheses and must instead utilize a

small set of weight vectors

= (5)
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where = [ ]. Multiple constraint vectors are
often used in monopulse radar [7], space-time adaptive
processing for nulling clutter [1], or when using deriva-
tive constraints on beamshape [8]. These weight vectors
can be applied as an adaptive beamspace in (4) to pro-
duce

� = argmax
(�)

(�) (�)
(6)

= is the sample covariance matrix
of the adaptive beamformer outputs. When the target
component of is contained within the space of , (6)
will still provide an asymptotically unbiased estimate of
target bearing. However, evaluation of (6) requires that
the full weight vector be applied to all steering vector
hypotheses (�). Depending upon the desired resolu-
tion of the bearing estimates, this can be a large com-
putational burden particularly when the search space is
multi-dimensional such as with a 2-D array or STAP
algorithms.
Rooting estimation techniques can experience di�cul-

ties when using multiple outputs for estimation since the
output �lters do not have identical patterns, as is gen-
erally the case when the weight vectors are formed from
di�erent subspaces. For example, the -th vector in (5)
may be formed using the subspace, so the subspace
weight vector becomes

= (7)

However, the ML estimation of (6) accounts for pattern
distortions by explicitly forming the pattern responses

(�). Each of the terms in (�) is com-
puted in the beamspace corresponding to the appropri-
ate vector, thus saving computations. Similarly, the out-
puts are also computed within each beamspace.
Changes in the correlation between subspace adaptive
weight vectors are adjusted with the term in (6).
Therefore, the bene�ts of subspace adaptive processing
are still preserved with the full ML estimation proce-
dure.
The cost of the direct ML calculation can be pro-

hibitive, but many adaptive radar problems can exploit
two simpli�cations on the steering vector structure to
reduce the computation of (6) to something more man-
ageable. These simpli�cations include representing the
steering vector as a Kronecker product and approximat-
ing each Kronecker component as a linear combination
of a smaller number of component vectors.
First, multi-dimensional arrays on a regular grid lay-

out (such as a rectilinear or rectangular grid) and STAP
algorithms (whose space-time sampling forms a rectan-
gular grid) can partition the steering vector as a Kro-
necker product of two smaller vectors which can dra-
matically reduce the cost of forming the ML test for
all candidate hypotheses. Let the snapshot length be

, where and are the lengths in each of the two
dimensions. The steering vector can be written as

(�) = ( ) ( ) (8)

where � = ( ) are the two location parameters, ( )
is the 1 steering vector for the dimension, and
( ) is the 1 steering vector for the second dimen-

sion.

Once the steering vector is presented in a Kronecker
form of (8), the ( ) weight matrix should be
partitioned in a similar way. Let the number of hypoth-
esis vectors (�) be where and are the number
of and vector hypotheses, respectively. Typically
radar systems require accuracies to be a small fraction
of a beamwidth in each dimension. Thus, ten or twenty
hypotheses per beamwidth in each dimension, or a total
of several hundred per resolution cell, is typical. This
forces all hypothesis weight vectors to lie on a grid in
� space composed of lines having constant cone angles
relative to the the Kronecker component vectors making
up the array (a speci�c implementation of the Kronecker
form for hexagonal arrays is given in Appendix A). The
weight matrix can be broken up into submatrices

each being of size so that

= ... (9)

Each matrix-vector product can then be com-
puted as

(�) = ( ) ( ) ( )

(10)
The bracketed term of (10) need only be computed for
each of the hypothesis vectors, requiring a total of

operations (where an operation is a complex
multiply and addition). Once formed, post-multiplying
by each ( ) requires an additional operations
which must be performed for each of the hypoth-
esis combinations of ( ). The total cost to compute

(�) for all hypotheses is ( + ) operations.
This is less than the operations required to
compute all (�) without using the Kronecker sim-
pli�cation by a factor of ( + ) which is bounded
by min( ) 2 and min( ).
Further reduction in computations can be achieved

when the hypothesis vectors in each dimension are ap-
proximated as the linear combination of a much smaller
number of basis vectors. Let ( ) and ( ) be rep-
resented as linear combinations of basis vectors from
matrices and , respectively,

^( ) = ( ) ^( ) = ( ) (11)

where

( ) = ( ) (12)

( ) = ( ) (13)

are the expansion coe�cients. Let and be the
number of basis vectors in and , respectively. The
accuracy of this representation increases with the num-
ber of beams in and , but generally three to �ve
beams is adequate for modeling any (�) within a
beamwidth of some desired location. The ( ) and
( ) coe�cients can also be pre-computed and stored

provided the appropriate grid of hypothesis vectors is
used around each origin for �. The full steering vector
(�) can then be approximated by

^(�) = ( ) ( ) = ( ) ( ( ) ( ))
(14)

For each basis vector , form the matrix

= (15)
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Table 1. Operation counts of ML estimation us-
ing Kronecker and steering subspace operations
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3. STAP NULLING APPLICATION
EXAMPLES

Figure 1.

b

a

Quantity Operations
Non-recurring:

+

+ +
( )
( )

( )
Recurring:

( )

( )
( + 2)

These matrices may then be combined for each hy-
pothesis to provide the matrix

( ) = ( ) ( ) (16)

Finally, for a speci�c �, this then yields the -length
vector

( ) = ( ) ( ) (17)

such that the ML estimator (6) becomes

� = argmax
( )^

( )
(18)

where ^ = . The total computations re-

quired to compute all terms in (15)-(17), and ( )
only need to be computed a single time for a speci�c
weight vector matrix . This cost is often compara-
ble to the cost of computing the weights, which can be
quite small compared to the cost of actually applying
the weights to the data.
The computation cost of (18) is recurring for each

detected data sample for which estimation is required.
This requires ( + 2) computations. Thus, the over-
all cost of direct ML beamsplitting a detected data
sample using this approach has been reduced to about
( +2) operations per hypothesis vector, which is signif-
icantly less than the operations per hypothesis to
do full-dimension ML beamsplitting. This result can be
thought of as comparing the whitened data vector to
a bank of matched �lters. The number of samples
with a declared detection is generally quite small com-
pared to the overall number of range gates, so this cost
does not stress the computation level of the processor.
The overall costs of this approach are parameterized in
Table 1.

Airborne early warning radars are required to detect tar-
gets in the presence of heavy ground clutter and/or jam-
ming. The platform motion induces an angle-dependent
Doppler shift on the clutter; for low PRF radars the
clutter may in fact �ll the available Doppler space. Clut-
ter cancellation for such a system requires space-time
adaptive processing (STAP) over the antenna element
(space) and the radar pulse repetition interval (time) di-
mensions. STAP in this context is joint angle-Doppler
adaptive processing. This problem �ts naturally into the
multidimensional framework described above. For the
STAP problem the data snapshot is comprised of the
samples from antenna elements and pulses that

correspond to a single radar range gate. The target
component of the snapshot has the space-time steering
vector given by (8). For the STAP problem represents
spatial frequency or azimuth and represents Doppler
frequency (normalized to the radar PRF):

= sin =
2

(19)

Here is the array interelement spacing, is the time
interval between successive pulses, and is the radar
platform velocity. Thus, ( ) is a temporal steering
vector that contains the interpulse phase shift commen-
surate with the target Doppler, and ( ) is the usual
spatial steering vector that contains the interelement
phases for the target angle of arrival.
A surveillance radar devotes a waveform dwell to a

speci�c angle, and for that period of time can reasonably
expect targets to only come from the direction of the
transmit beam. Therefore the number of receive beams
to be formed is typically small (two or three). The tar-
get velocity is completely unknown, so the STAP radar
must form a bank of adaptive �lters that cover the whole
Doppler space. Figure 1 shows a scenario for an = 8
element, = 8 pulse STAP radar. The radar PRF,
frequency, and platform velocity are such that the clut-
ter spread equals the radar PRF. A two beam by eight
Doppler bin cluster of adaptive �lters is processed and
fed to the beamsplitting algorithm. Each of these adap-
tive �lters will have a deep adaptive null on the clutter
line. After an initial adaptive matched �lter detection
with this coarsely sampled grid of adaptive �lters, the
approximate ML form from (18) was implemented. A
�nely sampled 20 20 grid of angle-Doppler hypotheses
was searched to provide accuracy commensurate with
20:1 beamsplitting in both angle and Doppler. The ba-
sis set for the hypotheses consisted of �ve steering vec-
tors in each dimension, equally spaced across a nominal
beamwidth centered at the �lter of the initial detection.
The performance of the estimator is evaluated by

Monte-Carlo simulation and shown in Figure 2. For each
target Doppler 200 trials were conducted. The target
SNR is 0 dB per element per pulse. This SNR corre-
sponds to 18 dB SNR at the output of a matched �lter
in the absence of any interference, which is just enough
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to support 20:1 beamsplitting in each dimension. Each
trial consisted of a sample covariance matrix with 5
clutter samples. The RMS spatial frequency (azimuth)
error is plotted versus target Doppler; the Cram�er-Rao
bound [9] is shown for reference. The error increases
as target Doppler gets smaller because the target is ap-
proaching the clutter ridge; i.e. the target starts to fall
in the STAP clutter null. The results show that the pro-
posed approach provides performance very close to the
Cram�er-Rao bound, while providing substantial compu-
tational savings over a full 2-D search.

This paper presented a multi-dimensional maximum-
likelihood (ML) estimation procedure using adaptive
subspace beamformed outputs. A search over hypothe-
sis vectors lying on a �xed grid in the multi-dimensional
estimation space allows a Kronecker representation of
the hypothesis steering vectors. In addition, a least-
squares �t of the hypothesis vectors to the constraint
beams employed by the adaptive weight vectors further
reduce the required computations. These two e�ects
show that the outputs from adaptive beams can be
used as a matched �lter for the grid of hypothesis es-
timation vectors to �nd the ML parameter estimate.
A simulation result demonstrated this procedure on
a space-time adaptive processing example and showed
very close matching with the Cram�er-Rao bound.

This appendix details the Kronecker steering vector for-
mulations for a two-dimensional arrays on a hexagonal
grid as shown in Figure 3. A steering vector can be fac-
tored as a Kronecker product for azimuth and eleva-
tion as ( ) = ( ) ( ) where ( )
is the Vandermonde steering vector as seen by the diag-
onal column of elements marked by ` ' in Figure 3 and

( ) is the steering vector as seen by the horizontal
column of elements denoted by the `o' marks. The Kro-
necker form of these two vectors �lls out the trapezoidal
grid shown by the dots in Figure 3. Often the array will
be constrained to only a portion of this grid as indicated
by the elements within the circle of Figure 3. When the

vector product ( ) is computed, is expanded
to include zeros in the trapezoidal grid which does not
correspond to an actual antenna element. The steering
vectors to be used for the ML hypotheses should then
consist of a �xed set of points on a grid de�ned by lines
having a constant cone angle with respect to the each
of the diagonal and horizontal axes marked by ` ' and
`o' respectively.
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