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ABSTRACT

In radar tracking target motion is best modeled in Carte-
sian coordinates. Its position is however measured in polar
coordinates (range and azimuth). Tracking in Cartesian
coordinates with noisy polar measurements requires either
converting the measurements to a Cartesian frame of ref-
erence and then applying the linear Kalman �lter to the
converted measurement [1] or using the extended Kalman
�lter (EKF) [2] in mixed coordinates. The �rst approach is
accurate only for moderate cross-range errors; the second
approach is consistent only for small errors. A new e�-
cient tracking algorithm using the multidimensional Gauss-
Hermite quadratures [3] to propagate the mean and the
covariance of the conditional probability density function
is presented. This method is compared with the EKF and
the converted measurement Kalman �lter (CMKF) and it
is shown to be more accurate.

1. INTRODUCTION

In target tracking the motion of a moving target is best
described in Cartesian coordinates by the following state-
space model [4].

xn+1 = F � xn +G � vn (1)

where xn is the vector of Cartesian coordinates target states
[xn vx;n yn vy;n]: xn and yn are the position of the target
in x and y directions; vx;n and vy;n are the velocities of
the target in x and y directions. F is the state transition
matrix; G is the noise gain matrix. vn is the system noise
process which is modeled as a zero-mean white Gaussian
random process with covariance matrix Qn.

The polar coordinate measurement of the target posi-
tion is related to the Cartesian coordinate target state as
follows:

zn = h(xn) +wn (2)

where zn is the vector of polar coordinates measurement
[rn �n]: rn is the range and �n is the azimuth of the tar-
get. h(�) is the Cartesian-to-polar coordinate transforma-
tion. wn is the observation noise process which is assumed
to be zero-mean white Gaussian noise process with covari-
ance matrix Rn. Target tracking becomes the problem of
estimating the target states xn from the noisy polar mea-
surements zn.

Target tracking in Cartesian coordinates using polar
measurements can be handled in two ways. One method is
called the converted measurement Kalman �lter (CMKF) [1],
which uses a Kalman �lter with polar measurements con-
verted to a Cartesian frame of reference. In this case the
Cartesian components of the errors in the converted mea-
surements become correlated and non-Gaussian, which can
seriously degrade the performance of the Kalman �lter.
An improved method using debiased converted measure-
ments [5] is showed to be more accurate and consistent for
all practical situations. The other method is the extended
Kalman �lter (EKF) which employs the �rst-order Taylor
series approximation to adapt the linear Kalman �lter to
the nonlinear system described by equations (1) and (2).
Error is introduced because higher-order terms in the series
are ignored and linearization is done about the predicted
state, not the actual state. There exists alternative ap-
proaches to the EKF, such as the \quasi-extended" Kalman
�lter [6], which shows improvements when tracking maneu-
vering targets at close range.

To improve the performance of the existing approaches,
a new tracking algorithm based on multidimensional Gauss-
Hermite quadrature is presented. Instead of approximating
the nonlinear measurement equation (2) with a linear one
with white Gaussian noise, our approach uses multidimen-
sional Gauss-Hermite quadrature to evaluate the optimal
estimate of the target states at each iteration directly from
the Bayesian equations [7]. This quadrature technique ap-
proximates the integrals in the Bayesian equations as sum-
mations and this approximation can be very accurate when
the integrand is smooth. To reduce the computation of
applying these quadratures analytic results are employed
in the prediction stage because the system dynamics are
linear; quadrature techniques are applied only to the mea-
surement update stage. Simulation results show that this
method is more accurate than the EKF and the converted
measurement Kalman �lter (CMKF).

2. THE OPTIMAL NONLINEAR FILTER

The optimal nonlinear �lter computes the minimum-variance
estimate of the state at each discrete time n which is just
the mean of the state density function conditioned on the
measurement history Zn : z0; : : : ; zn.

x̂opt;njn = E[xnjZ
n] =

Z
xnp(xnjZ

n)dxn (3)



This requires the a posteriori density function p(xnjZ
n) be

known at each iteration. This density function can be deter-
mined recursively by the following Bayesian equations [8]:

p(xnjZ
n
) =

p(xnjZ
n�1)p(znjxn)

p(znjZn�1)
(4)

p(xnjZ
n�1) =

Z
p(xn�1jZ

n�1)p(xnjxn�1)dxn�1 (5)

where the normalizing constant p(znjZ
n�1) in equation (4)

is given by

p(znjZ
n�1) =

Z
p(xnjZ

n�1)p(znjxn)dxn (6)

By assumption, the density function p(znjxn) in equation
(4) has a Gaussian distribution with mean h(xn) and co-
variance matrix Rn.

p(znjxn) =
1

2�jRnj1=2
e
�

1

2
(zn�h(xn))

T
R
�1

n (zn�h(xn))

(7)

Similarly, the density p(xnjxn�1) in equation (5) also has
a Gaussian distribution with mean Fxn�1 and covariance
matrix GQn�1G

T .
The initial a posteriori density p(x0jZ

0) is given by

p(x0jZ
0) = p(x0jz0) =

p(x0)p(z0jx0)

p(z0)
(8)

where p(x0) is usually assumed to be white Gaussian.
It is however generally impossible to accomplish the in-

tegration indicated in equations (5) and (6) in closed form
because of the presence of the nonlinear function h(xn).
When the measurement equations are linear and the ini-
tial state and the noise sequences are Gaussian. Then, the
equations (5) and (6) can be evaluated in closed form and
the posterior density p(xnjZ

n) is Gaussian for all n. The
mean and the covariance matrix of the a posteriori den-
sity p(xnjZ

n) are known as the Kalman �lter equations.
Most of the sub-optimal nonlinear �lter are based on the
linear Kalman �lter equations by transforming the nonlin-
ear measurement equation into a linear equation with white
additive Gaussian noise, i.e. forcing the requirements of the
Kalman �lter equations satis�ed. The next section presents
two sub-optimal �lters used extensively in target tracking
in Cartesian coordinates with noisy polar measurements.

3. SUB-OPTIMAL NONLINEAR FILTERS FOR
RADAR TRACKING

3.1. Extended Kalman Filter (EKF)

In the \mixed coordinate" EKF [2] the state is in Carte-
sian coordinates and the measurements are in polar coordi-
nates. Therefore, there is a nonlinear measurement function
h(xn). Denote the �rst order Taylor series approximation
of this nonlinear function about the predicted state x̂njn�1
as �h(xn); it is given by the following equation:

�h(xn) = h(x̂njn�1) +Hn � (xn � x̂njn�1) (9)

where Hn is the Jacobian of the nonlinear function h(xn)

Hn =

�
@hn(xn)

@xn

�
xn=x̂njn�1

When the above approximation is substituted into the deriva-
tions of the standard Kalman �lter equations, the Extended
Kalman �lter equations are obtained. Its accuracy however
depends heavily on the stability of the Jacobian matrix. In
practice, the Jacobian matrix is often numerically unstable
resulting in �lter divergence.

3.2. Converted Measurement Kalman Filter (CMKF)

With the converted measurement Kalman �lter [1], the po-
lar coordinate measurement zpn is �rst converted to the
Cartesian coordinate measurements zcn using an inverse non-
linear transformation h�1(zpn) The original noise process
wn acting on the converted measurement zcn no longer be-
haves rigorously as an additive term, but in some compli-
cated fashion. However, at least when the covariance of the
noise wn is small, the new Cartesian coordinate measure-
ment equation can be written as follows:

z
c
n =Dxn + ~wn (10)

where D =

�
1 0 0 0
0 0 1 0

�
and ~wn is approximated as a

white Gaussian noise process on the converted measurement
zcn with zero mean and covariance matrix Mn

Mn = E[ ~wn ~w
T
n ] =

�
@h�1(zpn)

@z
p
n

�
Rn

�
@h�1(zpn)

@z
p
n

�T �����
z
p
n=ẑnjn�1

(11)

where ẑnjn�1 is the predicted measurement. As a result,
the new measurement equation in Cartesian coordinates be-
comes linear and the noise process is Gaussian, the standard
Kalman �lter can be applied. This method however is an
acceptable approximation only for moderate cross-range er-
rors.

4. PROPOSED FILTER

4.1. Basic Principles

Instead of transforming the measurement equation linear
and the observation noise Gaussian, our method evaluates
the optimal estimate of the target states from the Bayesian
equations (4) and (5) directly using multidimensional Gauss-
Hermite quadratures [7]. Multidimensional Gauss-Hermite
quadrature is an approximation of an multidimensional in-
tegral of a function of the following form with a weighted
sum of the functional values evaluated at a set of pre-de�ned
grid points [3].

Z
Rn

f(x)e�(x�x̂)
T
P
�1(x�x̂)

dx �

NX
i=1

wif(xi)
(12)

where x and x̂ are n-dimensional vector and P is a n� n

nonsingular matrix; xi is the i
th

n-dimensional grid points
and wi is the corresponding weight. N is the total number



of grid points. The complexity of this quadrature technique
is of order of N . This approximation is very accurate espe-
cially when the function f(x) is algebraic.

To evaluate the state prediction density p(xnjZ
n�1) ef-

�ciently from equation (5), our method collapses the a pos-

teriori density p(xn�1jZ
n�1) which is non-Gaussian in gen-

eral at each iteration into a single Gaussian density function
with mean x̂n�1jn�1 and covariance matrix Pn�1jn�1. This
approximation is closely satis�ed in the radar tracking ap-
plications because the a posteriori density is unimodal and
the system equation is linear. By using this approximation,
the equation (5) can be evaluated in closed form and the
resulting state prediction density p(xnjZ

n�1) is a Gaussian
density function with mean x̂njn�1 and covariance matrix
Pnjn�1.

x̂njn�1 = F x̂n�1jn�1 (13)

Pnjn�1 = FPn�1jn�1F
T +GQnG

T (14)

The calculation of the a posteriori density p(xnjZ
n)

from equation (4) requires the evaluation of the normal-
izing constant p(znjZ

n�1) of the form

p(znjZ
n�1) =

Z
C1e

�
1

2
(zn�h(xn))

T
R
�1

n (zn�h(xn)) (15)

e
�

1

2
(xn�x̂njn�1

)TP�1

njn�1
(xn�x̂njn�1

)
dxn

where C1 = 1

2�jRn j1=2
1

2�jPnjn�1
j
1=2 . One may use the ex-

pression

F1(xn) = e
�

1

2
(xn�x̂njn�1

)TP�1

njn�1
(xn�x̂njn�1

)

as the Gaussian weighting function, but the remaining ex-
pression

F2(xn) = e
�

1

2
(zn�h(xn))

T
R
�1

n (zn�h(xn))

is not algebraic and the result may not be accurate. The
expression F2(xn) is thus factored into two expressions: one
is Gaussian, F 1

2 (xn) ; the other is nearly algebraic within
the desired region, F 2

2 (xn) as follows:

F
1
2 (xn) = e

�
1

2
(zcn�Dxn)

T
M
�1

n (zcn�Dxn)

F
2
2 (xn) = e

�
�

1

2
(zpn�h(xn))

T
R
�1

n (zpn�h(xn))

+ 1

2
(zcn�Dxn)

T
M
�1

n (zcn�Dxn)

�
There are several other approaches using linear approxi-

mation techniques to the nonlinear function h(xn) to factor
F2(xn) [7], but we employ the approximation technique in
the converted measurement Kalman �lter (CMKF), because
the converted measurement Kalman �lter (CMKF) has the
correct covariance and it yields smaller errors than the EKF
in radar tracking applications. The new weighting function
determined by F (xn) = F1(xn) � F

1
2 (xn) becomes

F (xn) = C2e
�

1

2
(xn�~xnjn)

T ~P�1

njn
(xn�~xnjn) (16)

where

~xnjn = x̂njn�1 +Kn(z
c
n �Dxn) (17)

Pnjn = Pnjn�1 �KnDnPnjn�1 (18)

Kn = Pn+1jnD
T
n (DnPnjn�1D

T
n +Mn)

�1 (19)

These equations are nothing else but the converted mea-
surement Kalman �lter (CMKF) equations, and the con-
stant C2 is not necessary to be known as it will be canceled
later. The normalizing constant p(znjZ

n�1) can be evalu-
ated using multidimensional Gauss-Hermite quadrature as
follows:

p(znjZ
n�1) = C1C2jWnj

�1

KX
i=1

BiF
2
2 (xn;i)

(20)

where

WnW
T
n = Pnjn (21)

xn;i = Wnui + ~xnjn (22)

ui = [ui1 ; : : : ; uiN ]
T (23)

Bi = Bi1 � � �BiN (24)

where Wn is the square root of Pnjn from the Cholesky

algorithm; xn;i is the i
th

N -dimensional grid points and Bi

is the corresponding weight. uij and Bij are the grid points
and the weights for one dimensional Gauss-Hermite quadra-
ture. K is the total number of grid points. Finally multidi-
mensional Gauss-Hermite quadrature is used to compensate
the error introduced from the approximation and the esti-
mate becomes

x̂njn =

PK

i=1
xn;iBiF

2
2 (xn;i)PK

i=1
BiF

2
2 (xn;i)

(25)

4.2. Filter Structure

The block diagram of the proposed �lter is presented in
Figure 1. It consists of the following four stages:

Previous EstimateStage 0:

Stage 1: Prediction
Eqn. (12-13)

Stage 3: Update Correction
Eqn. (25)

P n|n-1x̂

P n|n

Update EstimationStage 2:
Eqn. (17-19) 

x n|n
~

x̂

n|n-1

x n|n
^

P n-1|n-1n-1|n-1

Figure 1: Flow Diagram of the Proposed Filter

Stage 0: Previous estimates:
Assume at step n the mean x̂n�1jn�1 and the covari-

ance Pn�1jn�1 of the a posteriori density p(xn�1jZ
n�1)

are known. The initial values for the mean and the
covariance are estimated from the �rst two measure-
ments.

Stage 1: Prediction:
The mean x̂njn�1 and the covariance Pnjn�1 of the

state prediction density p(xnjZ
n�1) are predicted by

equations (13) and (14).



Stage 2: Update Estimation:
The mean ~xnjn and the covariance Pnjn of the a pos-

teriori density p(xnjZ
n) are �rst estimated by the

converted measurement Kalman �lter (CMKF) equa-
tions (17), (18) and (19).

Stage 3: Update Correction:
To compensate for the errors introduced in the ap-
proximation from Stage 2 multidimensional Gauss-
Hermite quadrature is used to evaluate the optimal
estimate of the target state x̂n directly from the Bayesian
equations and the �nal estimate is given by equation (25).

4.3. Comments

This algorithm basically consists of two parts: one is the
converted measurement Kalman �lter (CMKF) and the other
is an error-compensation unit using multidimensional Gauss-
Hermite quadrature. The complexity of this algorithm is of
an order of N where N is the total number of grid points.
The more the total number of grid points is, the more ac-
curate the result we will get. Simulation results show that
this algorithm is accurate compared with other methods
even when the number of the grid points is as small as �ve
for each dimension. This algorithm is also e�cient because
only simple additions and multiplications are required in the
computation; the computation of the grid points ui and the
corresponding weights Bi can be done o�ine.

5. SIMULATION RESULTS

To compare the performance of our proposed �lter with that
of currently popular approximate �lters a two-dimensional
target tracking application described by the system equa-
tion (1) and the measurement equation (2) with the follow-
ing parameters is simulated.

F =

2
64

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

3
75; G =

2
64

1=2 0
1 0
0 1=2
0 1

3
75;

h(xn) =

� p
x
2
n + y

2
n

tan�1 yn=xn

�
;

Q =

�
0:0001 0

0 0:0001

�
; R =

�
100 0
0 0:01

�
;

x0 =
�
50km �10m=s 10km 20m=s

�T
Tracks are initiated with two point di�erencing to obtain
the initial velocity estimate. The results presented in Fig-
ures 2 and 3 are based on 100 measurements averaged over
500 independent realizations of the experiment with the
sampling interval of one second.

The proposed �lter is compared with the well-known
classical �lters, e.g. the EKF and the converted measure-
ment Kalman �lter (CMKF). The position errors and the
velocity errors for each �lters are shown in Figs. 2 and 3
where the error is de�ned as the root mean square of the
di�erence between the actual value and the estimated value.
Our proposed method converges faster and yields results of
smaller error than the EKF and the converted measurement

Kalman �lter (CMKF) does whereas the EKF diverges due
to the instability of the Jacobian matrix.
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Figure 2: Comparison of the position errors
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Figure 3: Comparison of the velocity errors
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