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ABSTRACT

We consider the problem of the shape reconstruction of a
compact object in X ray tomography when the contour of
the object is modeled by a polygon. The problem is then to
estimate the vertices of that polygon from a limited number
of projections. The main objectives of this paper are:
{ to show how this reconstruction problem becomes equiv-
alent to a generic mathematical inversion problem which
arises also in linear antenna Array Processing (AP);
{ to evaluate the performances of the classical AP tech-
niques to handle with this reconstruction problem, and,
{ to propose a new method based on Bayesian estimation
approach for the resolution of this inverse problem.

1. INTRODUCTION

Image reconstruction in X ray tomography consists of de-
termining an object f(x;y) from its projections:

p(r; �) =

ZZ
f(x;y)�(r � x cos�� y sin �) dxdy (1)

In many image reconstruction applications, especially in
non destructive testing (NDT) and evaluation (NDE), we
know that f(x; y) has a constant value c1 inside a region (de-
fault region P ) and another constant value c2 outside that
region (safe region), e.g. metal & air. The image recon-
struction problem becomes then the determination of the
shape of the default region. In this communication, with-
out loss of generality, we assume that c1 = 1 and c2 = 0
and model the object by a polygonal disc:

f(x; y) =

�
1 if (x;y) 2 P;

0 elsewhere
(2)

where P is a polygonal region characterized by the coordi-
nates fzj = (xj + iyj); j = 1; � � � ;Ng of its vertices.
The problem of estimating zj from projections has �rst

been addressed by Milanfar et al. [1, 2] who proposed a
reconstruction method using the geometrical moments of
the projections and showed a link with array processing
methods. This work can be considered as an extension to
this work which completes some of their conclusions. So,
the goals of this paper are twofold:

1. To perform an up to date evaluation of the performances
of the classical AP techniques to handle with this recon-
struction problem. For this we used three methods: Least

square Prony's methods (both weighted and regularized)
and the matrix pencil method and;

2. To propose a new method based on Bayesian estimation
approach for the resolution of this inverse problem.

2. POLYGON RECONSTRUCTION FROM ITS

LINE PROJECTIONS

Following the Radon transform (1) relating p(r; �) and
f(x;y) and the special model for f(x;y) in (2), it is eas-
ily shown that there is a relation between the geometrical
moments of the projections:

hk(�) =

Z
p(r; �)rk dr (3)

and the geometrical moments of the object:

�p;q =

ZZ
P

f(x;y)xpyq dxdy (4)

which is

hk(�) =

kX
j=0

�
k

j

�
cosk�j(�) sinj(�)�k�j;j (5)

These moments are themselves related to the harmonic mo-
ments ck:

ck =

ZZ
P

f(x; y)zk dxdy; with z = x+ iy (6)

by

ck =

kX
j=0

�
k

j

�
i
j
�k�j;j (7)

which are themselves related to the coordinates zj by:

�k =

NX
j=1

ajz
k
j with �k = k(k � 1)ck�2: (8)

There is also another relation between aj and zj coming
from the Green's theorem in the complex plane and the
Cauchy-Riemann equations for analytic functions [3, 4],
which is:

aj =
i

2

�
�zj�1 � �zj

zj�1 � zj
�

�zj � �zj+1

zj � zj+1

�
: (9)



One can then consider a reconstruction procedure as fol-
lows:

1. From projections p(r; �) calculate hk(�) using (3);

2. Calculate �k�j;j; j = 0; � � � ; k from hk(�) using (5);

3. Calculate ck from �k�j;j using (7);

4. Calculate zj from ck using (8);

5. If the polygon is convex then stop, because there is only
one convex polygon with given vertices. If not we have to
choose an ordering for zj to construct the non convex poly-
gon. For this, �rst calculate aj using (8). Call this estimate
a0. Then, calculate aj using (9) for all possible orderings
famg, and �nally, choose the ordering set of vertices zj
which gives the best �t between a0 and am. We can use
either an L2 or an L1 distances to measure the �tness.
Note that, for the steps 1 and 3 we have direct relations

and they do not create any di�culties, but steps 2 and 4
are inversion and we have to study the conditions of their
inversion.
Note also that the mathematical problem at the fourth

step (eq. 8) is exactly the same as one in antenna Array
Processing (AP) where aj are the amplitudes of the sources,
zj are related to the Direction of Arrival (DAO) of these
sources and �k are the measurements obtained by antennas.
This idea has been �rst addressed by Milanfar et al.

[1, 2] who derived these relations and the theoretical nec-
essary and su�cient conditions of existence and uniqueness
of these two inversion steps 2 and 4, which can be resumed
as follows:

1. The geometrical moments up to order N of an object
(f�k�j;j ; j = 0; � � � ; k; k = 0; � � �Ng) are uniquely deter-
mined from the N + 1 moments of its N + 1 projections
fhk(�j); k; j = 0; � � � ;Ng.
This property is derived by looking for the inversibility con-
ditions of the following system of equations derived from the
eq. (5) for k = 0; � � � ;N and for di�erent projection angles
�j; j = 0; � � � ;N :

hk(�j) =

kX
j=0

�
k

j

�
cosk�j(�j) sin

j(�j)�k�j;j;

k; j = 0; � � � ;N .

2. The N vertices fzj; j = 1; � � � ;Ng of any non degenerate
polygon are uniquely determined from 2N � 1 moments �k.
This property is derived by looking for the inversibility con-
ditions of the following system of equations derived from the
eq. (8) for k = 0; � � � ; 2N � 1 :

�k =

nX
j=1

ajz
k
j ; k = 0; � � � ; 2N � 1

Now, combining these two conditions, and noting that
�k; k = 0; � � � ; 2N � 1 are uniquely determined from
2N � 3 moments ck which are uniquely determined from
(�k�j;j; j = 0; � � � ; k; k = 0; � � � 2N � 2) we deduce that
fzj; j = 1; � � � ;Ng are uniquely determined from the 2N�2
moments of the projections fhk(�j); k; j = 0; � � � ; 2N � 3g.

3. ARRAY PROCESSING METHODS USED

FOR EVALUATION

We have seen that for a non degenerate polygon with ver-
tices fzj; j = 1; � � � ;Ng we have

�k =

NX
j=1

ajz
k
j : (10)

Writing down this equation for k = 0; � � � ;M � 1 we obtain0
BBBB@

1 1 � � � 1
z1 z2 � � � zN
z21 z22 � � � z2N
...

...
...

z
M�1
1

z
M�1
2

� � � z
M�1
N

1
CCCCA

0
BBBB@

a0
a1
a2
...
aN

1
CCCCA =

0
BBBB@

�0
�1
�2
...

�M�1

1
CCCCA

or
Za = � : (11)

Prony's method [5] consists of showing that the zj are the
zeros of the polynomial

P (z) =

NY
i=0

(z � zi) =

NX
i=0

piz
N�i

; p0 = 1; (12)

where the coe�cients fpi; i = 1; � � � ;Ng are the solution of

0
BB@

�0 � � � �N�1
�1 � � � �N
...

. . .
...

�M�N�1 � � � �M�2

1
CCA

0
BB@

pN
pN�1
...
p1

1
CCA = �

0
BB@

�N
�N+1

...
�M�1

1
CCA ;

or
Tp = �h: (13)

It is then easy to show that if M � 2N � 1 the matrix T

has rank N . The equation (13) forms the basis of the Least
Squares Prony's (LSP) methods which consists of forming
the matrix T and the vector h from the data �k, estimating
p from this equation and calculating zj by solving P (z) = 0.
To solve (13) we used either the ordinary LSP (OLSP):

bp = �(T t
T )�1T t

h (14)

or the total LSP (TLSP):

bp = �(T t
T + �minI)

�1
T
t
h; (15)

where �min is the minimum singular value of the concate-
nated matrix [T ;h].
The matrix pencil method [6, 7, 8] is based on the obser-

vation that if we de�ne

T 0 =

0
BB@

�N�1 �N�2 � � � �0
�N �N�1 � � � �1
...

...
. . .

...
�2M�2 �2M�3 � � � �2M�N�1

1
CCA ;

T 1 =

0
BB@

�N �N�1 � � � �1
�N�1 �N � � � �2
...

...
. . .

...
�2M�1 �2M�2 � � � �2M�N

1
CCA



then zj are the generalized eigenvalues of the pencil ma-
trix T 0 � zT 1 or directly the eigenvalues of the matrix
(T t

1T 1)
�1T t

1T 0.

4. EVALUATION OF THE PERFORMANCES

OF AP METHODS

To evaluate the performances of the AP methods in our
reconstruction problem we adopted the following procedure:

1. Generate polygonal objects;

2. Calculate projections and add noise;

3. Calculate the geometric moments of the projections;

4. Calculate the geometric moments of the object using
those of the projections;

5. Apply the array processing techniques to estimate the
vertices coordinates of the polygon and construct the poly-
gon;

6. Compare the results with original.

Three main parameters in
uencing the results are: the
number of projections Np, the number of moments calcu-
lated for each projection Nm and the signal to noise ratio
SNR. We considered three objects; a triangle (N = 3) and
two non convex polygonal shapes with N = 4 and N = 6
(See Fig. 1). In any of these cases we considered three sit-
uations;
a) Np = Nm = 2N � 2 and SNR = 50dB,
b) Np > Nm = 2N � 2 and SNR = 30dB,
c) Np > Nm > 2N � 2 and SNR = 20dB.
Fig. 1 shows a typical reconstruction results. From these

results we can see that when SNR is very high and the
necessary conditions on number of projections and number
of moments are satis�ed then the reconstruction results are
satisfactory, but when SNR is low, the results are no more
very satisfactory. In this case, even increasing the number
of projections or the number of moments can not be of any
help.
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Fig. 1: Three di�erent polygons and their reconstructions
using the following parameters :
a) Np = Nm = 2N � 2 and SNR = 50dB,
b) Np > Nm = 2N � 2 and SNR = 30dB,
c) Np > Nm > 2N � 2 and SNR = 20dB.
- original polygons, o reconstructed vertices.

5. CONCLUSIONS AND PROPOSITION OF A

NEW METHOD

All the simulations showed that the classical AP methods
are very sensitive to the noise. Our main conclusion is that
this approach can not be used in practical situations of im-
age reconstruction. The main reason is that this procedure
does not use all the information contained in the projection
data. It only uses the moments of these projections.

Recently we proposed a reconstruction method ([9, 10])
using directly the projection data (not only the moments)
and estimate zj by minimizing the following combined cri-
terion:

J(z) = jjp� h(z)jj2 + �
(z); (16)

where z = x+ iy is a complex vector whose real and imag-
inary parts represent the x and the y coordinates of the
polygon vertices, p is a vector containing all the projection
data, h(z) represents the direct operator which calculates
the projections for any given z and 
(z) is chosen to be a
function which re
ects the regularity of the object contour.

This criterion can be interpreted as a regularization crite-
rion based on the Bayesian approach and the solution as the
MAP estimate when the noise is assumed to be zero-mean,
white and Gaussian and exp [��
(z)] as a prior probability
distribution for z.

In this work we used the following function:


(z) =

NX
j=1

jzj�1 � 2zj + zj+1j
2 (17)

which favors a shape whose local curvature is limited. This
is due to the fact that jzj�1 � 2zj + zj+1j

2 is proportional
to the distance between the vertices zj and the mid-point
of the segment joining the two adjacent vertices zj�1 and
zj+1. So, trying to minimize 
(z) favors the shapes with
low local curvature. Other functions are possible and have
been studied in this work.

What is important here is to note that, in this approach,
in opposition to the AP methods described before, we do
not have any limitations for the number of projections. For
example, Fig. 2.a shows an example of simulation of a typ-
ical situation in non destructive testing where the object is
modeled by a polygon with N = 40 vertices and where we
have only 5 noisy projections with SNR=20dB and limited
in angles between -45 and 45 degrees. Fig. 2.b shows the
result of reconstruction which is very satisfactory.

The main di�culty for implementing this method is to
use an appropriate global optimization algorithm to mini-
mize the non convex criterion (16). For this we proposed
the following strategies:

1: The �rst is to use a global optimization technique such
as simulated annealing (SA). This technique has given sat-
isfactory result as it can be seen from the simulations in the
next section. However, this algorithm needs a great number
of iterations and some skills for choosing the �rst temper-
ature and cooling schedule, but the overall calculations is
not very important due to the fact that the criterion J(z)
depends locally on z.



2: The second is to �nd an initial solution in the attractive
region of the global optimum and to use a local descent type
algorithm to �nd the solution.

The main problem here is how to �nd this initial solu-
tion. For this, we used a moment based method proposed
by Milanfar, Karl & Wilsky [1, 2] which is accurate enough
to obtain an initial solution which is not very far from the
optimum. The basic idea of this method is to relate the mo-
ments of the projections to the moments of a class of polyg-
onal discs obtained by an a�ne transformation of a centered
regular polygonal disc, and so to estimate a polygonal disc
whose vertices are on an ellipse and whose moments up to
the second order matches those of the projections. How-
ever, there is no theoretical proof that this initial solution
will be in the attractive region of the global optimum. In
[9, 10] we showed some results comparing the performances
of these two methods as well as a comparison with some
other classical methods.

For more details on the implementation of this new
method and a comparison of it's results with classical image
reconstruction methods see [9, 10].
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Fig. 2: Tomographic imaging geometry in non destructive
testing applications.
a) Original image and 5 noisy projections with limited an-
gles between -45 and 45 degrees.
b) Reconstruction using a polygonal model with N = 40
vertices and a simulated annealing algorithm for optimiza-
tion.
o: Original object vertices, +: Initialization and
?: Reconstructed object vertices.
c) Evolution of the criterion J(z) = J1(z) + �J2(z) with

J1(z) = jjp� h(z)jj2 and J2(z)
PN

j=1
jzj�1 � 2zj + zj+1j

2

during the iterations.


