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ABSTRACT

The aim of this paper is to compare different prediction methods
for chaotic deterministic systems. We consider three different me-
thods to evaluate the dynamics of the systems : the Nearest Neigh-
bors, the Radial Basis Functions and the Regression Tree. We
use a comparison criterion suited to chaotic systems : the pre-
diction horizon. The optimal prediction horizon is discussed with
respect to the sampling time step. We apply these methods to simu-
lated chaotic system (Lorenz system), experimental chaotic system
(Double-Scroll) and to intra-day series of exchange rates, namely
DEM/FRF. We provide developments concerning the choice of the
parameters involved in chaotic time series prediction.

1. INTRODUCTION

An interesting issue in the time series literature is the extent to
which chaotic time series are predictable. We consider here sam-
pled time seriesxn (with a time steph) stemming from a continu-
ous non linear dynamical system, defined by :�

X0 2 IRm some initial conditions
Xn+1 = �h(Xn)

(1)

whereXn 2 IRm stands for the current state of the system at
time n in the phase space and� the non linear function of the
current state. A non linear deterministic dynamical system will
be called chaotic [3] if the system is ergodic and very sensitive to
initial conditions. This latter property makes medium term pre-
diction impossible, but does not preclude any possibility of short
term prediction1 The purpose of this paper is to compare three non
parametric methods for short term prediction of chaotic time se-
ries : Nearest Neighbors (NN), Radial Basis Functions (RBF) and
Regression Tree (RT). There exists several criteria for comparing
the quality of prediction, see e.g. [9, 2]. The adopted criterion in
this paper is based on the horizon predictionHh defined as the date
at which the prediction errors departs from the actual value from
more than a given distance related to the dynamics of the system.
h stands for the time sampling step, andH is the number of those
sampling steps that are predictable from one starting point.

The performances and reliability of the prediction methods are
investigated for three kinds of series : a computer simulated
Lorenz chaotic system, an electronic Double-Scroll experiment
and an intra-day exchange rates time series. Although the chaotic

1Long term prediction may sometimes be obtained, given that the in-
variant measure of the system is known.

nature of these latter financial data is still an open problem, their
complex behavior makes them both challenging and interesting to
trial within the context of chaotic systems studies.

The remainder of this paper is organized as follows. The pre-
diction methods and the comparison criterion that we used, are the
purpose of Section 2. Section 3 details the time series used for test-
ing the different methods. The reconstruction of the phase space
by the Takens’s embedding method for experimental time series is
also recalled and a summary of the performed comparisons is pre-
sented. Section 4 is devoted to describe some problems related to
the presence of additive observation noise. Results on the robust-
ness of the prediction algorithm are presented and a link between
prediction horizon and reconstruction parameters is proposed.

2. PREDICTION METHODS

A method to forecast chaotic time series consists in reconstruct-
ing the function�h in (1) by a certain�̂h. The predicted values
X̂N+1; :::; X̂N+H are given by :�

X̂N+1 = �̂h (XN )

X̂N+i+1 = �̂h
�
X̂N+i

� (2)

Only iterated predictions will be considered in this paper. We fo-
cus our attention upon three non parametric approaches: the cel-
ebrated Nearest Neighbor method (NN) which corresponds to a
local approach, a semi-local method relying on the use of radial
basis functions (RBF), and regression tree based approach making
use of the existence of an invariant measure for the system.

2.1. Nearest neighbors (NN)
This method [1] is local and relatively easy to implement. If
only one neighbor is used, we search among the learning set
Xl
0; :::;X

l
N�1 the pointXl

i which is the closest toXN in the sense
of a certain norm (for example, the Euclidean norm) then we de-
fine :

�̂h (XN ) = Xl

i+1: (3)

It is possible to use more than one neighbor, to take more than one
past value for each one or to consider various weights. Since the
dynamics is assumed to be continuous in the phase space, we use
K neighborsXl

i1
; :::;Xl

iK
of XN , a weighting functionw and a

normk : k of IRm. Then we get :

�̂h (XN ) =

KX
k=1

w(


XN � Xl

ik



)Xl

ik+1
: (4)



Following B. Finkenst¨adt and P. Kuhbier [4], we assume that the
importance of each neighbor is proportional to the exponential of
its distance toXN :

�̂h (XN
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) (5)

2.2. Radial basis functions (RBF)
This semi-local method [1] approaches�h with a set of radial basis
functions by�̂h in the following way :

�̂h (XN) =

CX
c=1

�cwc (kXN �Yck) : (6)

whereYc are the centers of the radial functions which are chosen
via a clustering method over the past values ofXi. The functions
wc are arbitrarily chosen radial functions like Gaussian or multi-
quadric function ; here we use multi-quadric functions for compu-
tational efficiency :

wc(r) =
1p

r2 + r2c
; (7)

whererc is the radius of the centersYc. Their number is arbitrary
but always smaller thanN because we do not want to interpolate
� but to approximate it. The parameters�c are estimated using
a simple regression on the past values once the centers have been
chosen.

2.3. Regression trees (RT)
The driving idea is to estimate the probability of having an obser-
vation in a neighborhood (defined in the phase-space) of a state
vector at a given time . This amounts to construct a partition of the
phase space in order to get some constant probability withineach
cell: thus an m-dimensional histogram [7] (for an m-dimensional
phase space) is obtained. The proposed construction is recursive
and the derived structure can be represented by a tree : each non-
uniform cell of the phase space is splitted in2m cells by choosing
the marginal median on each axis. The uniformity of the estimated
probability distribution within a cell is tested by the�2 test : if
fpig represents the set of empirical probabilities of a sub-partition
(into 1

2m
sub-cells) of the cell under study, then the test measures

the departure offpig from the uniform distribution. Since the aim
is to obtain an uniform distribution, the stopping rule is the fol-
lowing : if the distribution is said uniform by the�2 test, the sub-
division is stopped, otherwise, the splits are memorized, together
with the ”children cells” and the partition is iterated further. To
achieve some prediction from this approach, the partition has to
be constructed from a learning set and we affect a prediction value
to each cell of the final partition : e.g. median or mean of future
values of the set of points (from the learning set) belonging to this
cell (see e.g. [8]).

3. APPLICATION TO TIME SERIES

3.1. The simulated Lorenz attractor
The continuous time representation for the Lorenz attractor we
choose is : 8<

:
dx

dt
= �(y � x)

dy

dt
= �xz + rx� y

dz

dt
= xy � bz

(8)

Here we take the parameter values :� = 16, R = 45:92, b = 4.

The prediction experiment has been performed from a learning
set of 5000 consecutive points of the numerically integrated sys-
tem (8). The horizon is estimated from iterated one-step forward
prediction (i.e. the prediction length is set to the sampling steph2)
as depicted in Section 2. This experiment is reproduced 500 times,
from times series obtained with different initial conditions, and the
results are averaged over all the experiments to provide an estimate
ofHh. The 4800 first points are used to form the learning set. The
200 next points will be used as reference values for estimating the
prediction error, as the predictions are performed from the 4801-st
point.
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Figure 1. 5% prediction horizon Hh for the Lorenz attractor
with the 3-NN method for sampling stepsh = 0:001, h = 0:01,
h = 0:1 and h = 1. Hh is estimated as the mean of500 pre-
diction horizons performed with a learning set of4800 points.
The dashed lines show the prediction horizon standard error.
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Radial Basis Functions

Figure 2. 5% prediction horizon Hh for the Lorenz attractor
with the RBF method (100 centers) for sampling stepsh =
0:001, h = 0:01, h = 0:1 and h = 1. Hh is estimated as the
mean of500 prediction horizons performed with a learning set
of 4800 points. The dashed lines show the prediction horizon
standard error.
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Figure 3. 5% prediction horizon Hh for the Lorenz attractor
with the RT method for sampling stepsh = 0:001, h = 0:01,
h = 0:1 and h = 1. Hh is estimated as the mean of500 pre-
diction horizons performed with a learning set of4800 points.
The dashed lines show the prediction horizon standard error.

The figures (1), (2) and (3) show respectively for the NN, RBF
and RT methods the prediction horizon at1% (a) and5% (b) accu-

2The sampling step is chosen as an integer multiple of the integration
step, for sake of convenience
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Figure 4. “Horizon Map” : evolution of prediction horizon (in
seconds) with the numberN of points of the learning set and
the sampling steph for the Lorenz attractor with the following
methods : NN (a), RBF (b) and RT (c).

racy estimated as the mean of500 prediction experiments ; stan-
dard errors of the results are plotted in dashed lines.

It is interesting to study [5] the evolution of the prediction hori-
zon with the numberN of points that are used to build the learn-
ing set and with the sampling steph. On figure (4)the horizon-
map obtained for varyingN andh is presented, as obtained for
the Lorenz attractor, by the three above mentioned methods.These
graphs show the increase of the prediction horizon with the num-
ber of points in the learning set. It also evidences the existence of
an optimal steph for which the prediction horizon is maximum.

3.2. Electronic Double-Scroll Experiment
The time series that we consider was recorded on an experimental
electronic setup realizing a chaotic oscillator of the Chua’s family
[11]. The circuit admitted the well known Double-Scroll equation :

8<
:

dx

dt
= �(y� 
)

dy

dt
= x� y + z

dz

dt
= ��y

(9)

where


 =

(
m1x+m0 �m1 if x > 1
m0x if � 1 < x < 1
m1x�m0 �m1 if x < �1

(10)

with the parameter values :� = 9, � = 100
7

,m0 = � 1
7

andm1 =
2
7
. The sampling time for recording the series wash = 69; 4 �s.
For the case of the Double-Scroll experiment, only one time se-

ries was recorded. As a consequence, the prediction horizon was
computed from a phase space reconstruction based on Takens’s
method [10]. However, when dealing with finite duration observa-
tions (finite time series) the choice of both the time delay� and the
embedding dimensionm is of major incidence on the accuracy of
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Figure 5. 5% prediction horizon for the the experimental
Double-Scroll series for the three methods (a) : NN, RBF and
RT with a 3-dimensional reconstruction and evolution of5%
prediction horizon with the value of reconstruction dimension
for the RT method (b).

the reconstruction. Here,� is set to match the sampling steph and
m = 2; 3; 4; 5 (see e.g. [6], for discussion on the topic of setting
these parameters).

The following figure (5) illustrates the behavior of the5% pre-
diction horizon with the three methods : NN, RBF and RT (a). The
influence of the value of reconstruction dimension is illustrated in
figure (5(a)).

3.3. Economical intra-day data
We have selected the Deutsch mark/French Franc exchange rates.
Our empirical investigation covers the period between 01/09/94
and 31/08/95 with 420 134 data. The series we consider is the
mean of bid and ask quotes without the outliers found during the
first step. The same procedure as for the previous experimental
data is used to reconstruct the dynamics from the single series we
have.

Figure (6) shows the same kind of results as figure (5) for the
Double Scroll experimental system when� equals 600 seconds :
5% prediction horizon with the three methods : NN, RBF and RT
(a) and evolution of5% prediction horizon with the reconstruction
dimension for the RT method.
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Figure 6. 5% prediction horizon for the DEM/FRF intra-day
series for the three methods (a) : NN, RBF and RT with a
3-dimensional reconstruction and evolution of5% prediction
horizon with the value of reconstruction dimension for the RT
method (b).

4. DISCUSSION OF THE RESULTS

4.1. Behavior of the methods in the presence of additive noise
Experimental datayn are in general corrupted by noise. Here we
restrict our study to the case of additive observation noise, i.e. to
the case where the perturbations do not take part in the dynamical
evolution of the system; such noise intervenes only in the observa-
tion equation of the dynamical system.

Let �n be an m-dimensional noise. Thus the dynam-
ics of the experimental data are following the equations�

Xn+1 = �h(Xn)
yn = xn + �n

. wherexn is a coordinate of the state vector

Xn.
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Figure 7. Influence of the noise on the5% prediction horizon
with the Lorenz attractor for the three methods. (b) shows
details for low prediction horizon.

For testing whether the proposed prediction methods perform
reasonably in the presence of additive noise, the initial data sets
have been corrupted by an additive white zero-mean Gaussian
noise (WGN). We adopted the following definition for the signal
to noise ratio (SNR) :

SNR = 10 log10
E[kxn �E[xn]k2]

�2
(11)

�2 stands for the variance of the WGN. In the following, the in-
fluence of noise is illustrated on prediction horizon measurements
computed for the corrupted Lorenz attractor, for SNR ranging from
0 to 40 dB, andh = :01.

Figures (7) show the influence of additionnal observation WGN
on the5% prediction horizon with the simulated Lorenz for a SNR
of 0 to 40 dB. The three methods seem to be quite robust to noise
until different level :25 dB for NN, dB for RBF and15 dB for
RT.

4.2. UsingHh for estimating embedding parameters

The purpose of this section is to evaluate the advantage of using
Hh for estimating the embedding parameters� andm. Therefore,
the prediction horizonHh is estimated for different values ofm.
Figure (5(b)) evidences the existence of an optimal (with respect
to the accessible horizon length) reconstruction dimension. It is
interesting to note that the valuem = 4 is the same value obtained
with a different criterion : the prediction error variance normal-
ized by the signal energy [8]. Figure 8 present the evolution of
normalized one step prediction error variance with the reconstruc-
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Figure 8. Normalized by the signal energy variance of the one
step prediction error for the experimental Double Scroll sys-
tem with the NN and RT methods

tion dimension for the NN and RT methods with the Double-Scroll
experiment.
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