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ABSTRACT

A hidden Markov model method for estimating an a posteriori
distribution of the amplitude of communications signals is
presented.  As the signal to noise ratio decreases the hidden
Markov model method is shown to perform significantly better
than a conventional histogram method for characterising the
amplitude distribution.  The HMM estimation is performed
within a Expectation Maximisation method in order to improve
the estimates of the transition probabilities used in the HMM
and the resulting estimated amplitude distribution.

1. INTRODUCTION

A new method for estimation of a posteriori distribution of the
amplitude of communications signals is presented.  The
approach which is commonly used to acquire the amplitude
distribution of a communications signal (in baseband quadrature
form) is to simply compute the signal’s amplitude at each time
instant and then plot the histogram of their values.  For signal’s
with sufficiently high Signal to Noise Ratio (SNR) the features
of the signal’s amplitude distribution may (from inspection) be
evident from this histogram.  It should be noted that this method
is invariant to the effects of carrier drift  However in the case of
digital signals (which have a number of distinct amplitude
levels, i.e a 16 QAM signal [2] has 3 distinct amplitude levels),
as the signal’s strength decreases the histogram method begins
to coalesce features of the amplitude distribution which may be
adjacent to each other, thereby making them unresolvable, i.e.
for a 16 QAM signal of the three distinct amplitude levels which
should be present only two are visible.  Further, increasing the
number of amplitude bins used in the histogram, does not
improve the resolution.

Parker [1] recently developed some techniques for estimating
the SNR of Quadrature Amplitude Modulated (QAM) signals
[2].  These techniques are based on histograms of the baseband
signals’ real or complex raw amplitudes.  However, if carrier
drift is not compensated for in a signal at baseband, these

techniques will fail as the real / complex amplitudes will be
continuously varying due to the carrier drift.  White and Ross
[3] recently presented a method for adaptive demodulation of
phase modulated signals using Hidden Markov Models (HMMs)
[4].  They stated that the method can be extended to QAM
signals, if estimates of the amplitudes could be initialised
suitably close to the correct amplitude.  If the signal strength is
such that a histogram of the raw amplitudes can not extract the
amplitude features correctly, and the number of amplitude levels
is unknown, how can this be done?

In this paper we present a HMM method for estimating the
posterior distribution of the amplitude of a signal in quadrature
baseband form.  This method is invariant to carrier drift and
suitable for signals which have either continuously valued
amplitudes (as in analogue signals) or discrete amplitude levels
(as in digital signals).  It is shown that the HMM method can
extract the features of the amplitude distribution at SNR levels
for which the histogram method fails.

2. THE ALGORITHM

The signal of interest is modelled in the quadrature baseband
representation:
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where at  ≥ 0 denotes the amplitude, φ π πt ∈ −( ),  denotes the

phase and vt  is a zero mean white Gaussian process with

independent real and imaginary parts, vt
r  and vt

i  respectively,

each of variance σ2 .  The signal amplitude and phase are
assumed to be either continuously valued (i.e. takes values in an
interval) in the case of analogue modulated signals, or to belong
to a discrete set in the case of digital signals.



The task is to estimate the posterior distribution of the amplitude
given a block of data, Z = 

  
z zT1, ,K{ } .  We assume that the

amplitude statistics are stationary over this interval.  We also
wish to impose no prior information on the phase, so we assume
the phase is an independently identically distributed (i.i.d.)
sequence with uniform prior.  The observed data likelihood is
given by:
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where A = {a1,..., aT } and 
  
Φ = { }φ φ1, ,K T .  Taking the

expected value over Φ  yields:
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where IO is the zero order modified Bessel function of the first
kind.  Thus the expected likelihood with iid uniform phase
priors is identical to the likelihood for the amplitude of the

signal (1), i.e. E p Z A p R AΦ Φ,( )[ ] = ( ) , where R = {r1, ..., rT}

with r zt t= , i.e. Rician distributed [2, pp. 60].

The next step is to apply the on-line HMM smoothing methods
described in [5] to obtain the set of (approximate) a posteriori

probabilities 
  
p a Z t Tt( ) =, , ,1K .  We assume a discretised set

of amplitude levels (as in the histogram method), and a set of
associated a priori transition probabilities.  The amplitude
distribution is then re-estimated using the ergodic average:
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If one assumes the amplitude is continuous, a method for
obtaining the transition probabilities is to assume they have a
normalised Gaussian distribution with an estimated variance of
σ̂a

2 , although other distributions could also be just as valid.  Use
of a normalised Gaussian distribution allows the transition
probabilities to be controlled via the variance which can be
estimated via an Expectation Maximisation (EM) approach [4]
(see Appendix).

In the case of digital signals where the amplitudes can change
instantaneously between discrete levels, the algorithm is
modified so that a fixed interval smoothing HMM algorithm is
used and reinitialised and calculated over each of the baud
periods (where the amplitude is continuous again), but the
ergodic average is taken over all baud periods.  The intervals for
which the amplitude is continuous (i.e. the baud periods) can be
determined by using baud rate estimation techniques [6] (which
are also insensitive to carrier drift).  The HMM equations and
EM approach for the digital case are described in the appendix.
For the analogue case the HMM equations need to be modified
from fixed interval smoothing over each baud period to an on-
line approach [5] over all the data.

3. RESULTS AND CONCLUSION

We test the digital version of the method presented above using
a square 16 QAM signal (see [2, pp. 6]) which has three distinct
amplitude levels.  A 16 QAM signal is generated and mixed
down to baseband.  First a high SNR signal (30 dB) was used
and figure 1 shows the amplitude distribution as determined
using a histogram and the HMM method (solid line).  For the
HMM method the baud periods were first determined using a
baud rate estimation method and a posteriori probabilities
calculated for each baud period but averaged over all baud
periods.  Figure 2 shows the histogram and HMM estimate
(solid line) of the amplitude distribution for a signal with a SNR
of 15dB.  The variance σ̂a

2  of the normalised Gaussian
distributed amplitude transition probabilities was estimated
using the EM approach described in the appendix, however it
was noted that σ̂a

2  could converge to local maxima of the
likelihood which may result in an unsatisfactory estimate of the
amplitude distribution (dashed line).  Also the noise variance
used in the estimation was significantly smaller (corresponding
to a 30dB signal) than the 15 dB signal noise variance.  The
authors found that the HMM’s amplitude distribution estimate
deteriorated considerably if the correct noise variance
(corresponding to 15dB) was used.  One could also use an EM
approach to estimate the noise variance which should be used
(however this has not been done in this paper).  Figure 3 is for a
20dB pulse shaped signal (standard raised cosine filter with the
roll off set to 0.75) and again shows the estimate of the
amplitude distribution for the histogram and HMM method
(solid line).

As can be seen in Figures 1 - 3, the HMM method (with
parameters tuned, i.e. the value of σ̂a

2 ) performs significantly
better than the histogram method when determining the
amplitude distribution of baseband signals.
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Figure 1:  Amplitude distribution (30dB Signal).
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Figure 2:  Amplitude distribution (15dB Signal).
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Figure 3:  Amplitude distribution (20dB pulse shaped Signal).
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APPENDIX

The reader is referred to [4] for an explanation on hidden
Markov models and the Expectation Maximisation (EM)
method.  The following description only explains the equations
used in the HMM & EM estimation methods.

Expectation Step (E-Step):

Using the current (or initial) value of σ̂a
2 , determine the

normalised Gaussian distributed transition probabilities for the
N amplitude states of the HMM, i.e.
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The HMM forward probabilities are recursively calculated as
follows:
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for t = 0, ..., T-1 and i = 0, ..., N-1.  T is the baud period of the
signal, n corresponds to the nth baud period and qi  is the ith

amplitude state of the N uniformly discretised amplitude levels.
Also:
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is the probability that the observation rnT t+  was produced by

amplitude state qi .
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π i( ) is set uniformly.

The HMM backward probabilities are recursively calculated as
follows:
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 (note that this

initialisation prevents data from the next baud period from being
used in the current baud period estimates, i.e. each baud period
is calculated independently).

Now the probability that the amplitude at time t is amplitude
state qi   given all the observations in a baud period is:
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for i = 0,...,N-1.

Now we also calculate:
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Maximisation Step (M-Step):

Update σ̂a
2  by:
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remembering that aij  is a function of σ̂a
2 .

The process is then repeated and EM theory guarantees
convergence of σ̂a

2  to a local maximum of the likelihood.


