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ABSTRACT

In this paper we address the problem of approximating func-
tions on a semi-in�nite interval by truncated series of or-
thonormal generalized Laguerre functions. The generalized
Laguerre functions contain two parameters, namely a scale
factor and an order of generalization. The rate of conver-
gence of a generalized Laguerre series depends on the choice
of these parameters. Results concerning the determination
of the two parameters are presented.

1. INTRODUCTION

It is sometimes desirable to have a compact description of
a function, say f(t), de�ned on the continuous interval IR+,
which exhibits an exponential decay towards in�nity. Such
a function could for example be the impulse response of a
causal and stable system. A good approach is to approxi-
mate the function by a truncated Laguerre series, because
the Laguerre functions also show an exponential decay. The
rate of decay of the Laguerre functions is determined by a
free design parameter. In the case of a truncated Laguerre
series the choice of this parameter is essential to obtain a
small Integrated Squared Error (ISE),

Some systems have impulse responses that show a slow
start and an exponential decay towards in�nity. A Laguerre
series expansion of such an impulse response cannot be ex-
pected to show a fast convergence, since the basis functions
have an abrupt start. A much better basis in these cases
would be the set of generalized Laguerre functions. Like
the Laguerre functions, the generalized Laguerre functions
contain a free design parameter that determines the rate of
decay towards in�nity. In addition, they contain a param-
eter that determines how fast the functions start. Finding
good values for these parameters for generalized Laguerre
approximations is the subject of study in this paper.

The approach in this paper was inspired by similar work
on truncated Laguerre expansions in [1]-[6], and truncated
Hermite expansions in [7]. The structure of the paper is
as follows. First, in Section 2 we introduce the generalized
Laguerre functions and some of their properties. Second,
Section 3 deals with truncated expansions using generalized
Laguerre functions and the stationarity conditions of the
ISE with respect to the scale factor. Lastly, in Section 4 an
approach is given to arrive at a "good" scale factor and a
"good" order of generalization for the generalized Laguerre

functions based solely on some speci�c measurements of the
function f(t).

2. GENERALIZED LAGUERRE FUNCTIONS

The generalized Laguerre polynomials belong to the class of
classical orthogonal polynomials, and are given by [8, 9]:
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with m = 0; 1; : : :; � > �1, and x 2 IR+. The parameter
� is called the order of generalization. In the special case
where � = 0 the polynomials in (1) reduce to the Laguerre
polynomials [8, 9].

The generalized Laguerre polynomials are orthogonal
under the window function w(�)(x) = x�e�x, in particularZ
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where �mn is the Kronecker delta and �(�) is the Gamma
function.

The generalized Laguerre polynomials and the weight
function w(�)(x) can be used to construct functions on IR+

that are orthonormal with respect to a unity weight func-
tion. These functions are obtained by multiplying the gen-
eralized Laguerre polynomials by the square root of their
weight function, followed by a change of scale in the x-
axis according to x = �t (� > 0) and a normalization, see
[10]. As a result we obtain the so-called generalized La-
guerre functions, given by
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Here t stands for the time index (t � 0). These functions
have two free parameters, namely the order of generaliza-
tion � and the scale factor �. For � = 0 the functions in (2)
reduce to the Laguerre functions [11]. The orthonormality
of the generalized Laguerre functions is expressed byZ
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Figure 1: Network to generate the generalized Laguerre functions for even values of the order of generalization �. Further,
�(�) = �(1+�)=2.

In the rest of this paper an inner product as given in the
left-hand side of (3) of two real functions f(t) and g(t) is
written as hf(t); g(t)i.

The generalized Laguerre functions have Laplace trans-
forms
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Here, �(�) = �(1+�)=2 and M
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m;n is the (m + 1; n + 1)-

th element of the lower triangular matrix M (�), given by
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if m � n. For even values of � the Laplace transforms

�
(�)
m (�; s) are rational functions of s and the generalized La-

guerre functions can be generated as the impulse responses
of the network shown in Figure 1, see also [10].

Increasing the value of � results in a more slowly start-
ing weight function under which the generalized Laguerre
polynomials are developed. In turn, this leads to more
slowly starting generalized Laguerre functions. Thus, with
�, the center of energy of these functions can be shifted
in time. Equivalently, a larger value for � results in more
emphasis on the lower frequency components of the func-
tions at the expense of the higher frequency components.
As an example, in Fig. 2 the �rst four generalized Laguerre
functions are plotted for two di�erent values of �.

For later use we give that the partial derivative of the
m-th generalized Laguerre function with respect to the scale
factor � can be expressed in the next and previous general-
ized Laguerre function [10]:
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and D
(�)

�1;0(�) = 0. For � = 0 the relation (4) reduces to
the special case of the Laguerre functions, see [2], [4] and
[12]. A similar result exists for Hermite functions [7].

3. TRUNCATED GENERALIZED LAGUERRE

EXPANSIONS

Let L2(IR
+) denote the Hilbert space of square-integrable

functions on IR+. The generalized Laguerre functions form
a complete orthonormal set in L2(IR

+) [13]. Therefore, any
square-integrable causal function f(t) can be expanded in
a generalized Laguerre series according to
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where the expansion coe�cients cm(�;�) are determined
via the following inner product:

cm(�;�) = h f(t); �(�)m (�; t) i: (6)

An M -term truncated generalized Laguerre expansion be-
comes the approximation fM(t) of f(t) and reads:

fM(t) =
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With the truncation error de�ned by e(t) = f(t) � fM(t),
the ISE is given by

�M (�;�) = h e(t); e(t) i =
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and clearly is a function of � and �. Minimization of the
ISE with respect to � and � is a nonlinear problem. As a
preliminary step towards solving this problem, it is possible
to derive the stationarity conditions of the ISE with respect
to the scale factor �. By setting the derivative of �M (�;�)
with respect to � equal to zero, one �nds:
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With cm(�;�) given by (6) and with the speci�c form of the
derivative of a generalized Laguerre function with respect
to � in (4) we �nd

@cm(�;�)

@�
= D

(�)

m;m+1(�) cm+1(�;�)

� D
(�)

m�1;m(�) cm�1(�;�): (8)



-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

Figure 2: The �rst four generalized Laguerre functions with � = 2. For the functions on the left plot we took � = 6 and we
took � = 16 in the right plot. The solid, dashed, dotted and dash-dotted lines correspond with m = 0, m = 1, m = 2 and
m = 3, respectively.

Using this, (7) becomes
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a series of which only the �nal term remains uncancelled:

@�M (�;�)

@�
=

p
M(M + �)

�
cM�1(�;�) cM (�;�):

Thus, for any stationary point of �M(�;�) with respect to
� it is necessary and su�cient that at least one of the two
following conditions is satis�ed [10]:

cM�1(�;�) = 0 or cM (�;�) = 0: (9)

The problem of �nding the stationary points of �M (�;�)
with respect to � is now reduced to �nding the zeros of
either cM�1(�;�) or cM(�;�) with respect to �. To this end
the gradient in (8) can be used. Higher-order derivatives
can readily be obtained by iterative application of (8). If
one has a reasonably good choice of the scale factor � for
a given order of generalization �, then a better one can be
found with one or more iterations of Newton's method.

When cM�1(�;�) = 0, the M -term approximation re-
duces to an (M � 1)-term approximation. Therefore, one
would expect that at local minima of the ISE as a func-
tion of � the second condition in (9) is the one satis�ed.
Unfortunately, this is not always the case.

In the next section it will be shown how a good choice for
the scale factor and the order of generalization can be made,
using only a few speci�c measurements of the function f(t).

4. A GOOD � AND � FOR TRUNCATED

GENERALIZED LAGUERRE EXPANSIONS

Like all classical polynomials the generalized Laguerre poly-
nomials satisfy a second-order di�erential equation. This

di�erential equation is given by [9]
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where a prime denotes di�erentiation with respect to x and
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As we will see hereafter, the di�erential equation in (11)
can be used to provide a tight upper bound of the ISE
that can be minimized with � and �. Following the ideas
presented in [5] we proceed as follows. We de�ne the linear
operator L on a function f(t) in L2(IR

+) by
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for which we can write with (5) and (11)
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where F (�;�) = hf(t);Lf(t)i. Denoting by CF the class of
functions with given F (�;�), it is easy to prove the exis-
tence of a function g(t) 2 CF which achieves the bound in
(13), see [5].

For functions f(t) in L2(IR
+) we have that
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With (12) this gives us
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where the moments m�1 to m2 are de�ned as

m�1 = hf(t); t�1f(t)i; m0 = hf(t); f(t)i;
m1 = hf(t); tf(t)i; m2 = hf 0(t); tf 0(t)i;

assuming that these exist. Note that all the moments are
strictly positive numbers.

Setting the derivative of F (�;�) with respect to � equal
to zero yields a "good" scale factor �̂ for a given order of
generalization �:
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Indeed, with � = 0 the scale factor in (14) corresponds to
the one found by Parks in [3] (there the notation p = 2� is
used).

Setting the derivatives of F (�;�) with respect to � and
� both equal to zero yields one unique solution for a "good"
scale factor and a "good" order of generalization:
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The number of generalized Laguerre functions in the
truncated expansion can be chosen such that the bound in
(13) is satisfactorily small. Finally, if desired, the scale fac-
tor can be re�ned with one or more iterations of Newton's
method.

For the generalized Laguerre functions themselves (with
� > 0) it can be proved that
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4
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so that �̂ = � and �̂ = �, which is reassuring.

5. CONCLUSION

In this paper some results concerning the determination of
the optimal center and scale factor for truncated generalized
Laguerre series were presented. It was demonstrated that
the stationary points of the ISE with respect to the scale

factor satisfy a simple condition, which also holds in the
general case of a system identi�cation setting with non-
white excitation [10].

An easy-to-use procedure has been proposed to directly
�nd a "good" scale factor and a "good" order of generaliza-
tion. The method does not require complete knowledge of
f(t), only a few speci�c measurements of the function need
to be known, and is thus useful in practical situations with
experimental data. The obtained scale factor and order of
generalization are the best that can be found when only the
afore-mentioned measurements are available.
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