
ADAPTIVE ALGORITHMS FOR WEIGHTED MYRIAD FILTER OPTIMIZATION
�

Sudhakar Kalluri Gonzalo R. Arce

Department of Electrical Engineering

University of Delaware, Newark, DE 19716, U. S. A

kalluri@ee.udel.edu

ABSTRACT

Stochastic gradient-based adaptive algorithms are devel-

oped for the optimization of Weighted Myriad Filters, a

class of nonlinear �lters, motivated by the properties of

�-stable distributions, that have been proposed for robust

non-Gaussian signal processing in impulsive noise environ-

ments. An implicit formulation of the �lter output is used

to derive an expression for the gradient of the mean abso-

lute error (MAE) cost function, leading to necessary con-

ditions for the optimal �lter weights. An adaptive steep-

est-descent algorithm is then derived to optimize the �lter

weights. This is modi�ed to yield an algorithm with a very

simple weight update, computationally comparable to the

update in the classical LMS algorithm. Simulations demon-

strate the robust performance of these algorithms.

I INTRODUCTION

Classical statistical signal processing has been dominated

by the assumption of the Gaussian model for the underly-

ing signals. However, a large number of physical processes

are impulsive in nature and are better-described by heavy-

tailed non-Gaussian distributions. Several robust �ltering

and estimation techniques have been proposed to combat

impulsive noise and outliers. Weighted median �lters have

been widely used in image processing due to their ability to

preserve edges and reject outliers [1]. Weighted myriad �l-

ters have been proposed recently [2] motivated by �-stable

distributions, which accurately model impulsive processes

[3]. The characteristic exponent � (0 < � � 2) of an �-

stable distribution controls the heaviness of its tails; a s-

maller � signi�es heavier tails. The special cases � = 2

and � = 1 yield the Gaussian and Cauchy distributions,

respectively.

In this paper, we derive necessary conditions for opti-

mal weighted myriad �lters under the mean absolute error

(MAE) criterion [4, 5]. An implicit formulation of the �l-

ter output is used to �nd an expression for the gradient of

the cost function, leading to adaptive steepest-descent algo-

rithms to optimize the �lter weights. Simulations, involv-

ing lowpass �ltering a quadchirp signal in �-stable noise,

demonstrate the robust performance of these algorithms in

impulsive environments.

�THIS WORK WAS SUPPORTED IN PART BY THE NA-

TIONAL SCIENCE FOUNDATION UNDER GRANT MIP-

9530923.
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Figure 1. Weighted myriad objective function, in-

put samples x = [4:9; 0:0; 6:5; 10:0; 9:5; 4:7; 1:0], weights

w = [0:05; 0:1; 0:6; 0:9; 0:6; 0:1; 0:05].

II WEIGHTED MYRIAD FILTERS

Just as the mean and median are based on the Gaussian

and Laplacian distribution, respectively, the myriad is de-

�ned as the Maximum Likelihood estimate of location of the

Cauchy distribution [2]. For a set of N independent and i-

dentically distributed (i.i.d.) observations fxig
N
i=1, drawn

from a Cauchy distribution with location parameter � and

scaling factorK > 0: f(x; �) =
�
K
�

�
1

K2+(x��)2
, the sample

myriad �̂K maximizes the likelihood function
QN

i=1
f(xi; �).

Thus, �̂K
4

= argmin�
QN

i=1
[K2 + (xi � �)2]. By assigning

non-negative weights to re
ect the levels of reliability of the

input samples, we obtain the weighted myriad. For an ob-

servation vector x
4

= [x1; x2; . . . ; xN ]
T and a weight vector

w
4

= [w1; w2; . . . ; wN ]
T , the weighted myriad �lter (WMyF)

output is �̂K(w;x)
4

= argmin� GK(�;w;x); where

GK(�;w;x) � GK(�)
4

=
QN

i=1
[K2 + wi(xi � �)2] (1)

is called the weighted myriad objective function. It is easy

to show using (1) that the �lter output depends only on
w
K2 , hence there are only N independent �lter parameters.

The weighted myriad �lter output is the value of � at the

global minimum of GK(�), which is a polynomial of degree

2N . Fig. 1 shows typical plots of log(GK(�)) for a data

window size N = 7, with the order statistics fx(m)g
N
m=1

(samples sorted in increasing order of magnitude) shown on

the horizontal axis. Since all the local minima are in the

range [x(1); x(N)] of the input samples, so is the �lter output.



The �lter output �̂ is one of the roots of the (2N�1) degree

derivative polynomial G
0

(�)
4

=
@GK (�;w;x)

@�
: G

0

(�̂) = 0:

The limiting case K ! 1 (holding the weights �-

nite) leads to the linear weighted mean �lter: �̂1 =PN

j=1
wjxj=

PN

j=1
wj , hence the name linearity parameter

for K. When K ! 0, we obtain the weighted mode-myriad

�lter [2, 5], a robust selection �lter (the output is one of the

input samples) that is highly resistant to outliers.

III ADAPTIVE FILTER OPTIMIZATION

Given an input vector x, a weight vector w and linearity

parameter K (0 < K < 1), denote the weighted myriad

�lter output as y � yK(w;x) � y(w;x). The �ltering error,

in estimating a desired signal d, is e = y � d. The MAE

cost function is J(w; K)
4

= E fjejg = E fjyK(w;x)� djg ;

where E f�g represents statistical expectation. Since the

�lter output depends only on w
K2 [5], the optimal �ltering

action is independent of the choice of K. The cost function

is therefore written simply as J(w). The optimal weights

minimize J(w) subject to the constraints wi � 0; i =

1; 2; . . . ; N . To obtain necessary conditions for optimality,

equate the gradient of J(w) to zero:

@J(w)

@wi

= E

n
sgn(y � d)

@y

@wi

o
= 0; wi � 0; i = 1; 2; . . . ; N;

(2)

where sgn(x) is the sign function with sgn(0) = 0. The

above conditions lead to highly nonlinear equations that are

di�cult to solve in closed-form for the optimal weights. We

therefore minimize the cost function J(w) using the steepest

descent method. Further, to deal with situations where the

statistics of the signals are unknown or time-varying, we

use instantaneous estimates for the gradient by removing

the expectation operator in the gradient expression, just as

in the classical LMS algorithm [6]. Including the constraint

of non-negative weights and using (2), we have the following

adaptive algorithm to update the �lter weights:

wi(n + 1) = P

h
wi(n) � � sgn(e(n))

@y

@wi

(n)

i
; (3)

where wi(n) is the ith weight at the nth iteration, � > 0

is the step-size of the update, e(n) is the error at the nth

iteration and P [u]
4

=

�
u; u > 0

0; u � 0:
To �nd @y

@wi
, note

from Section II that G
0

(y) = 0. Using (1) and the fact that

G(y) > 0, we can derive

G
0

(y) = 2G(y)

NX
j=1

wj(y � xj)

K2 + wj(y � xj)2
(4)

and

H(y;wi)
4

=

NX
j=1

wj(y � xj)

K2 + wj(y � xj)2
= 0; (5)

where the function H(�; �) emphasizes the implicit depen-

dence of y on wi, holding all other quantities �xed. Implicit

di�erentiation of (5) with respect to wi yields�
@H

@y

�
:

�
@y

@wi

�
+

�
@H

@wi

�
= 0: (6)

As an important aside, we can show by di�erentiation of

(4), combined with the de�nition of H(y;wi) in (5), that

@H

@y
=

1

2

G
00

(y)

G(y)
� 0: (7)

The last step is because G
00

(y) � 0 since y is a local min-

imum of G(�), and G(y) > 0 always. Substituting the ex-

pressions for @H
@y

and @H
@wi

, derived using (5), into (6), we

can �nd @y

@wi
. Using that in (3), we obtain

Adaptive Weighted Myriad Filter Algorithm I

wi(n+ 1) = P

�
wi(n) + � sgn(e(n))

ri(n)

R(n)

�
; (8)

ri(n)
4

=

(
(y � xi)�

1 + wi
K2 (y � xi)

2
�2
)
(n) (9)

and

R(n)
4

=

(
NX
j=1

wj

1�
wj

K2 (y � xj)
2�

1 +
wj

K2 (y � xj)
2
�2
)
(n) : (10)

Note that R(n) is non-negative since it can be shown [5] to

be proportional to @H
@y

(n), which is non-negative from (7).

To prevent the unstable behaviour due to R(n) becoming

very small, we add a stabilization parameter a > 0 to R(n);

the update denominator is then lower bounded by a. This

leaves the direction of the gradient estimate unchanged (the

update term is proportional to the negative of the gradient

estimate). We thus have

Adaptive Weighted Myriad Filter Algorithm Ia

wi(n+ 1) = P

�
wi(n) + � sgn(e(n))

ri(n)

a + R(n)

�
: (11)

By removing the denominators from the update terms, we

obtain the following greatly simpli�ed algorithm:

Adaptive Weighted Myriad Filter Algorithm II

wi(n+ 1) = P [wi(n) + � sgn(e(n)) ri(n)] (12)

where ri(n) is given by (9). The update here is computa-

tionally comparable to the least mean absolute deviation

(LMAD) algorithm wi(n+1) = wi(n) � � sgn(e(n))xi(n):

To understand the operation of Algorithm II, rewrite (9):

ri(n) = �[y(n)�xi(n);
wi(n)

K2
];�[u; �]

4

=
u

(1 + �u2)
2
: (13)

Fig. 2 illustrates the operation of the algorithm and the

update magnitude function �[u; �] is shown in Fig. 3.

Assume that e(n) > 0, i.e. d(n) < y(n) at the current

iteration, so that sgn(e(n)) = +1. Then, from (12) and

(13), the weights wi(n) are increased (ri(n) > 0) if xi(n) <

y(n) (i = i1; i2 in Fig. 2). Increasing weight wi moves the

�lter output towards xi. Thus, we can conclude (taking into

account the case e(n) < 0) from Fig. 2 that the algorithm

moves the �lter output towards the samples that are on

the same side of y(n) as d(n). That is, the �lter output

moves towards the samples that are closer to the desired

signal. Also, Fig. 3 shows that the update is negligible for

samples xi(n) that are far from the current estimate y(n);

the algorithm is thus robust to outliers.
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Figure 2. Operation of Adaptive Algorithm II.

u

∆ (u;  ξ)

umax

3 ξ
= 

umax16
9

1

Figure 3. Update magnitude function �(u; �).

IV SIMULATION RESULTS

The adaptive algorithms of Section III were tested using

a computer simulation example involving lowpass �ltering

a chirp-type signal in �-stable noise. Fig. 4(a) shows the

clean quadchirp signal s(n), a sinusoid with quadratically

increasing instantaneous frequency. The desired signal d(n)

(Fig. 4(b)) was obtained by passing s(n) through an FIR

lowpass �lter of window length N = 11. The signal s(n) is

corrupted by additive symmetric zero-mean �-stable noise,

yielding a noisy observed signal x(n) (the training signal).

The characteristic exponent � and the dispersion 
 of the

noise were chosen as � = 1:4 and 
 = 0:1 (the dispersion


 decides the spread of the distribution around the origin

[3]). The chosen �-stable noise process simulates low-level

Gaussian-type noise along with impulsive interference.

The linear �lter was trained using the least mean abso-

lute deviation (LMAD) algorithm (also called the sign LMS

algorithm): wi(n+1) = wi(n)� �sgn(e(n))xi(n): The ini-

tial �lter weights were all chosen to be zero. The weighted

median �lter adaptation used an adaptive weighted order

statistic (WOS) algorithm described in [1]. The initial �l-

ter for the weighted median and the weighted myriad algo-

rithms was the identity �lter; all the o�-center weights were

zero, while the center weight was chosen as 10:0. For the

weighted myriad algorithms, the linearity parameter was set

to K = 1:0 and the stabilization parameter of Algorithm Ia

(see (11)) was set to a = 1:0. All the �lters had window

length N = 11. The adaptive algorithms were implemented

using multiple passes through the signals.

The trajectories of some of the �lter weights for Algo-

rithms Ia and II are shown in Fig. 5. The weight curve

w8(n) is non-monotonic, while the weight w6(n) (the weight

of the center sample) is monotonically decreasing. This is
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Figure 4. (a) s(n): clean quadchirp signal, (b) d(n):

desired signal (lowpass FIR �ltering of s(n)), (c)

x
0

(n): noisy quadchirp test signal, (d) y
0

lpfir(n): low-

pass FIR �ltering of x
0

(n), (e) y
0

lmad(n): linear (L-

MAD) �lter output, (f) y
0

wm(n): weighted median

�lter output, (g) y
0

wmyIa(n): weighted myriad �lter

output (algorithm Ia), (h) y
0

wmyII (n): weighted myr-

iad �lter output (algorithm II).

due to the large initial value w6(0) = 10:0 which, in the

beginning, pulls the o�-center weights (including w8(n)) up

from their initial zero values. The other o�-center weight

curves are similar to w8(n). The �gure shows that Algo-

rithms Ia and II converge to almost the same weight values,

but Algorithm II converges signi�cantly faster. The conver-

gence of the various algorithms is con�rmed by Fig. 6, which

shows the MAE learning curves obtained by time-averaging

the absolute �ltering error signals je(n)j (no comparison of

convergence speeds is intended in presenting these curves).

The various trained �lters were applied to a test signal

x
0

(n) obtained by adding a di�erent realization of noise to

the clean quadchirp signal of Fig. 4(a). The test signal x
0

(n)

(Fig. 4(c)) was chosen to be more impulsive than the train-

ing signal x(n). Fig. 4(d) shows the output of the designed

lowpass FIR �lter. This �lter is severely a�ected by the

impulses in the test signal. The output of the linear �lter,

trained using the LMAD adaptation, is shown in Fig. 4(e)

and is evidently far from the desired signal; the trained lin-

ear �lter is only marginally better than the lowpass FIR

�lter. The weighted median �lter output of Fig. 4(f) is less

a�ected by the impulses, but exhibits severe distortion, in

part because the �lter is constrained to be a selection �l-

ter. The �lter is also unable to remove the high-frequency

portions of the quadchirp signal completely. The outputs

of the weighted myriad �lters from Algorithms Ia and II,

shown in Figs. 4(g) and (h), respectively, are visually the
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Figure 5. Weight trajectories wi(n) for Adaptive

Weighted Myriad Filter Algorithms Ia and II: (a)

w6(n), (b) w8(n).

MAE MSE

Filter Type Training Test Training Test

Lowpass FIR 0.1380 0.1993 0.0971 0.1547

Linear LMAD 0.1282 0.1813 0.0668 0.1141

Weighted Median 0.1563 0.1594 0.0504 0.0516

Weighted I 0.0968 0.0962 0.0194 0.0193

Myriad Ia 0.0910 0.0903 0.0162 0.0160

II 0.0959 0.0947 0.0187 0.0185

Table 1. Mean absolute error (MAE) and mean

square error (MSE) in �ltering the training and test

signals.

closest to the desired signal, especially in the low-frequency

portions of the quadchirp signal.

These results are con�rmed by Table 1, which shows

mean absolute errors (MAEs) and mean square errors (M-

SEs) incurred in �ltering the noisy quadchirp signals x(n)

(Training) and x
0

(n) (Test) with the various trained �lters.

The weighted myriad �lters have the smallest (and similar)

MAEs as well as MSEs in all cases. The linear �lters are

adversely a�ected by the change from the training to the

test signal. The weighted median �lter is more robust but

has high MAEs. The weighted myriad �lters are hardly af-

fected by the change in the noise, demonstrating their high

robustness.

V CONCLUSION

Necessary conditions for optimal Weighted Myriad Filters

were derived under the mean absolute error (MAE) crite-

rion. Stochastic gradient-based adaptive algorithms were

developed to optimize the �lter weights. The adaptive algo-
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Figure 6. Time-averaged learning curves.

rithms were investigated through simulations involving low-

pass �ltering a chirp-type signal in �-stable noise. Learning

curves and �lter weight trajectories served to demonstrate

the convergence of the adaptive algorithms. The trained

weighted myriad �lters achieved lower MAEs than the adap-

tive linear and weighted median �lters, and were more ro-

bust to changes in the noise environment.

Theoretical analysis of the convergence of the adaptive

algorithms is being pursued. Design rules for the choice of

algorithm parameters (step-size and initial �lter weights)

are being developed. Optimizations of some special cases

of weighted myriad �lters are considered in future publica-

tions.
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