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ABSTRACT

Higher-Order-Statistics (HOS) are being used in many
areas of digital signal processing, e.g. in the �eld of
array processing. The main aim is often to suppress
Gaussian noise. Mostly, the corresponding algorithms
are applied to short data blocks, because only then the
stationarity of the data needed for cumulant estimation
is given. In many cases, not enough attention is paid
to the fact that for short data blocks the suppression of
Gaussian noise is small compared to the estimation er-
ror made because of the higher order of the cumulants.
In this paper, the property of cumulants to suppress
Gaussian noise is studied in detail. With an algorithm
for direction-of-arrival (DOA) estimation in the �eld of
array processing, the estimation errors that occur when
using HOS are compared with the estimation errors
that occur when using 2nd order statistics. A quanti-
tative result will be given to show that for short data
blocks the suppression of Gaussian noise with HOS
doesn't lead to a better result than using 2nd order
statistics.

1. INTRODUCTION

The use of Higher-Order-Statistics (HOS) for estima-
tion problems is getting more important in the recent
years. With HOS it is possible to derive more infor-
mation from the received signal than with 2nd order
statistics, which have commonly been used before. For
example, the phase of the transmission channel can not
be derived from the symbol-rate sampled (stationary)
received signal if conventional second order statistics
are used only. This information can only be derived
with HOS [1] [2] or by exploiting cyclostationarity of
the data [3] [4]. Cyclostationarity will not be dealt with
in this paper.

Another bene�t of HOS, which is often the main
reason of using it, is the suppression of Gaussian noise,
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for example, in the �eld of array processing [5] [6]. But
in many cases not enough attention is paid to the fact
that for short data blocks the suppression of Gaussian
noise is small compared to the estimation error made
because of the higher order of cumulants. Just for in-
creasing data length, the suppression of Gaussian noise
of HOS becomes more important. In realistic situa-
tions, however, we can only work with short data blocks
(about several hundred samples) in order to meet the
stationarity assumption made for the estimation.

To clarify the bene�t of HOS for the suppression
of Gaussian noise quantitative experiments are carried
out in this paper. In section 2, estimation errors of
cumulants of white Gaussian noise are studied. In
section 3, a distorted signal with Gaussian noise is used
to analyse the inuence of the suppression of Gaussian
noise on the estimated cumulants of the distorted sig-
nal. In section 4, an algorithm for DOA estimation in
array processing is used to show the disadvantage of
HOS for short data blocks if no compensation is made
for the estimation errors of the cumulants used. In
section 5 the conclusion of this paper follows.

Other advantages of HOS in array processing, e.g.
the extension of the e�ective array [7] [8], the cali-
bration of the steering vector in a one signal case [9],
and the improvement of the estimation variance of the
cumulants through averaging over all possible ways to
compute a correlation [8], will not be dealt with in this
paper.

2. SUPPRESSION OF GAUSSIAN NOISE

USING CUMULANTS

For the analysis of the suppression of Gaussian noise
by cumulants, stationary white complex Gaussian noise
r(n) is used. Theoretically, with total suppression of
Gaussian noise r(n), the autocumulants of r(n) should
be zero.

cumr
4
(�1; �2; �3) = 0 (1)

Unfortunately, we can get this ideal result only if



the data length used for the estimation is in�nite. This
condition is not met in realistic cases.

To show the dependence of the estimated autocu-
mulants dcumr

4
(�1; �2; �3) on the data length, the fol-

lowing test has been executed: 12 di�erent data lengths
between 50 and 1000 samples are used to estimate the
autocumulants by unbiased sample averaging in 500
Monte-Carlo-Runs, where the parameter �1 is set to
values ranging from �19 to 20 and the parameters
�2 and �3 are set to zero. Since the exact values of
the autocumulants are zero, the estimation results of
dcumr

4
(�1; �2; �3) are equal the estimation errors.
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Figure 1: Cumulant estimation errors of a Gaussian
process in terms of data length

In Figure 1, the estimation errors ofdcumr
4
(�1; �2; �3)

are averaged over all parameters �1; �2 and �3. The
dependence of the estimation errors on the data lengths
is shown. With growing data length the estimation
error is getting smaller.

In order to show the inuence of the suppression
of Gaussian noise on the estimation of cumulants of a
distorted signal, a further test is executed in section 3.

3. ANALYSIS OF THE INFLUENCE OF

THE SUPPRESSION OF GAUSSIAN NOISE

ON THE ESTIMATION OF CUMULANTS

For the analysis of the inuence of the suppression
of Gaussian noise on the estimaton of cumulants, the
model given in Figure 2 is used in this paper:

Here, x(n) is a zero mean, non-Gaussian, i.i.d. QPSK
signal and r(n) is stationary additive white Gaussian
noise. x(n) and r(n) are statistically independent. y(n)
is the sum of both processes.

For the analysis, we estimate the autocumulants

x(n) y(n)+

r(n)

Figure 2: System model for the analysis of cumulant
estimation errors

of y(n). Because of the �nite data length used for
the estimation of the autocumulants, dcumy

4
(�1; �2; �3)

can not be equal to the exact values cumy
4
(�1; �2; �3).

There is always an estimation error �y
4
(�1; �2; �3).

dcumy
4
(�1; �2; �3) = cumy

4
(�1; �2; �3) +

�y
4
(�1; �2; �3) (2)

As shown in Figure 2, y(n) is the sum of the signal
x(n) and the Gaussian noise r(n), where x(n) and r(n)
are statistically independent. So we can express the
total estimation error �y

4
(�1; �2; �3) as:

�y
4
(�1; �2; �3) = �x

4
(�1; �2; �3) + �r

4
(�1; �2; �3) (3)

Here, �x
4
(�1; �2; �3) is the estimation error caused

by the �nite data length of the undistorted signal x(n)
and �r

4
(�1; �2; �3) is the estimation error caused by

Gaussian noise.
To show the inuence of the suppression of Gaus-

sian noise on the estimation of cumulants, the ratio of
�y
4
(�1; �2; �3) and the true autocumulant cum

y
4
(�1; �2; �3),

which is equal to cumx
4
(�1; �2; �3), is used.

f(�1; �2; �3) =
j�y

4
(�1; �2; �3)j

jcumx
4
(�1; �2; �3)j

(4)

Here data lengths ranging from 100 to 8000 are used
to compute f . The same values of � and number of
Monte-Carlo-Runs as in section 2 are used for Figure
3. Since f(�1; �2; �3) is dependent on the signal-to-
noise ratio (SNR), di�erent SNR's have been used for
the test.

As a comparison, the relative estimation errors of
the correlation estimates of y(n), which are similarly
de�ned as in equation 2, are also shown in Figure 3.

As far as the relative estimation errors are con-
cerned, we realize from Figure 3 that there is a certain
minimum blocklength (depending on the noise power)
below which cumulant estimation errors exceed the cor-
relation estimation errors.

In realistic applications we mostly work with short
data blocks (about 200 samples) to meet the station-
arity assumption of a data block for the estimation.
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Figure 3: Inuence of the suppression of Gaussian noise
on the error of cumulant estimates of a distorted signal:
(a) SNR = 5dB; (b) SNR = 10dB

Moreover, the SNR values that we can assume are usu-
ally between 5dB and 10dB in mobile radio applica-
tions, e.g. . So it is interesting to know whether the
use of HOS rather than 2nd order statistics for an
estimation problem leads to a better result on these
conditions because of the advantage of HOS of sup-
pressing Gaussian noise. Often, no general statement
can be made to answer the question how critical a given
relative estimation error proves to be for the respective
algorithm.

In the following section the cumulant and corre-
lation estimation errors will be compared with an al-
gorithm for direction-of-arrival (DOA) estimation in
array processing.

4. COMPARISON OF THE CUMULANT

AND CORRELATION ESTIMATION

ERRORS WITH A DOA ESTIMATION

ALGORITHM

The ESPRIT algorithm is a common approach for the
DOA (direction-of-arrival) estimation of incoming sig-
nals in array processing, which is based on the eigen-
value decomposition of the spatial correlation matrix
of the sensors' output signals. [10]. A modi�ed version
of this algorithm was presented in [8]. It uses 4th order
statistics and is called VESPA.

For the simulations, two independent QPSK sources
(i.e. zero mean, non-Gaussian and i.i.d. processes) are
used to illuminate a linear array consisting of 8 equi-
spaced omnidirectional sensors. The DOA's of these
sources are �1 = 200 and �2 = 400 with respect to the
array normal. The additive sensor noise is assumed to
be white and Gaussian which is independent between
the sensors and independent from the sources.

In order to compare the estimation errors of VESPA
and ESPRIT, only 5 sensors are used for VESPA, which
correspond to 8 sensors in ESPRIT by using the HOS
advantage of the extention of the e�ective array. The
mean square errors of the estimated DOA's with these
two algorithms are used for the comparison.

MSE4 =
1

500

500X
i=1

2X
j=1

jb�V ESPAj (i)� �j(i)j
2 (5)

MSE2 =
1

500

500X
i=1

2X
j=1

jb�ESPRITj (i)� �j(i)j
2 (6)

Here, b�V ESPAj (i) is the estimated DOA of the j-th
source in the i-th Monte-Carlo-Run with VESPA andb�ESPRITj (i) is the estimated DOA of the j-th source in
the i-th Monte-Carlo-Run with ESPRIT.

Since the estimation errors of both algorithms are
dependent on SNR, two cases are compared for SNR =
5dB and SNR = 10dB.

In Figure 4 it is clear to see that a data length of at
least 5000 samples is needed to get a better estimation
result with HOS than with 2nd order statistics. So we
can say that the suppression of Gaussian noise by HOS
leads to better DOA estimates only from a certain large
data length onwards which is unrealistic in many cases.
Therefore, we can not con�rm the results presented in
[8] for blocklengths of 100 samples.
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Figure 4: Comparison of the estimation errors using
ESPRIT (solid lines) and VESPA (dash-dotted) at: (a)
SNR = 5dB; (b) SNR = 10dB

5. CONCLUSION

This paper has given a quantitative analysis of the
Gaussian noise suppression property of HOS. By a DOA
estimation example, it has been shown that for short
data lengths, the use of HOS only because of their
advantage to suppress Gaussian noise is not to be rec-
ommended.

6. REFERENCES

[1] B. Jelonnek and K. D. Kammeyer. Improved
Methods for the Blind System Identi�cation using
Higher Order Statistics. IEEE Trans. on Signal

Processing, SP-40(12):2947{2960, December 1992.

[2] D. Boss, B. Jelonnek, and K. D. Kammeyer.
Eigenvector Algorithm for Blind MA System
Identi�cation. EURASIP Signal Processing,
Spring 1997. To appear.

[3] S. V. Schell, D. L. Smith, and W. A. Gardner.
Blind Channel Identi�cation Using 2nd-Order
Cyclostationary Statistics. In Proc. EUSIPCO-

94, pages 716{719, September 1994. Edinburgh,
Scotland.

[4] L. Tong, G. Xu, and T. Kailath. Blind
Identi�cation and Equalization Based on Second-
Oder Statistics: A Time Domain Approach. IEEE
Trans. on Information Theory, pages 340{349,
March 1994.

[5] Jean-Fran�cois Cardoso and �Eric Moulines. Asymp-
totic Performance Analysis of Direction-Finding
Algorithms Based on Fourth-Order Cumulants.
IEEE Trans. on Signal Processing, 43(1):214{224,
January 1995.

[6] X. Fan and N. H. Younan. Asymptotic Analysis
of the Cumulant-Based MUSIC Methode in the
Presence of Sample Cumulant Errors. IEEE

Trans. on Signal Processing, 43(3):799{802,March
1995.

[7] P. Chevalier, A. Ferreol, and J.P. Denis. New
Geometrical Result about 4-th Order Direction
Finding Methods Performance. In Proc. of

EUSIPCO'96, Trieste, Italy, 10.-13.09 1996.

[8] Mithat C. Dog�an and Jerry M. Mendel. Ap-
plication of Cumulants to Array Processing -
Part I: Aperture Extension and Array Calibration.
IEEE Trans. on Signal Processing, 43(5):1200{
1216, May 1995.

[9] Mithat C. Dog�an and JerryM. Mendel. Cumulant-
Based Blind Optimum Beamforming. IEEE

Trans. on Aerospace and Electronic Systems,
30(3):722{740, July 1994.

[10] R. Roy and T. Kailath. ESPRIT-Estimation
of Signal Parameter via Rotational Invariance
Techniques. Optical Engineering, 29(4):296{313,
April 1990.


