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ABSTRACT

This paper addresses the calculation of moments of com-
plex Wishart and complex inverse Wishart distributed ran-
dom matrices. Complex Wishart and complex inverse
Wishart distributed random matrices are used in applica-
tions like radar, sonar, or seismics in order to model the
statistical properties of complex sample covariance matri-
ces and complex inverse sample covariance matrices, respec-
tively. Moments of these random matrices are often needed
e.g. in studies of asymptotic properties of parameter esti-
mates. This paper gives a derivation of the probability den-
sity function of complex inverse Wishart distributed ran-
dom matrices. Furthermore, strategies are outlined for the
calculation of the moments of complex Wishart and com-
plex inverse Wishart distributed matrices.

1. INTRODUCTION

In signal processing the multivariate complex normal dis-
tribution is used in order to describe the statistical prop-
erties of certain signals. An example are signals measured
by sensor arrays in radar, sonar, or seismic applications.
Often data enters an estimation procedure in form of a

sample covariance matrix Ŝ = 1
K

PK

k=1
xkx�

k. In sonar

applications, xk denotes the vector valued �nite Fourier
transformed sensor outputs of succeeding data stretches
(k = 1; : : : ;K). Then, the vectors xk are asymptotically
normally distributed. In radar applications a quadrature
demodulation scheme is used to obtain the complex enve-
lope of the signal. The complex envelope is modelled by
the complex normal distribution in radar detection prob-
lems and source location estimation.

Typically estimators like e.g. maximimum likelihood,
least squares, or weighted subspace �tting estimators for
source location estimation are functions of the sample co-

variance matrix Ŝ. The derivation of the asymptotic prop-
erties of these estimates when the sample size K increases
involves moments of complex Wishart or complex inverse
Wishart distributed matrices. This is because the sam-
ple covariance matrix is distributed as a complex random
Wishart matrix if measured data is modelled by a complex
normally distributed random vector. Furthermore, for the
derivation of the asymptotic properties the expected value

or the covariance matrix of a function of Ŝ are needed. If
an algorithm uses the inverse of the sample covariance ma-
trix (e.g. [3]) one is lead to the complex inverse Wishart
distribution.
In this paper, the probability density function of inverse

complex Wishart distributed random matrices is derived.

The moments of complex Wishart distributed matrices are
determined using the characteristic function. A novel strat-
egy for the calculation of the moments of inverse complex
Wishart distributed random matrices is outlined. The com-
plex Wishart distribution is discussed in [4], results for the
real Wishart distribution can be found e.g. in [1].

2. PRELIMINARIES

Following [4] a complex N -dimensional random vector X is
called complex normally distributed with expected value �

and hermitian positiv (semi-)de�nite covariance matrix �:

X � NC
N

�
�;�

�
; if the 2N -dimensional real vector Y =

(ReX0; ImX0)
0

is normally distributed with expected value

�
R
=
�
Re �0; Im�0

�
0

and covariance matrix

�R =
1

2

h
Re� �Im�
Im� Re�

i
:

Throughout the paper all vectors are column vectors. The
symbols 0 and � denote tranposition of a matrix and the
hermitian operation, respectively. Given X1; : : : ;XK in-
dependently identically complex normally distributed N -
dimensional random vectors with expected value 0 and co-
variance matrix �. Then, the (N � N) random matrix

W =
PK

k=1
XkX

�

k is complex Wishart distributed with
K degrees of freedom and parameter matrix �: W �
WC

N (K;�): The probability density function (pdf) fW of
W and the characteristic function (cf) �W(�) of the ele-
ments of W are known [4].

3. COMPLEX INVERSE WISHART

DISTRIBUTION

Let the (N �N) matrix W be Wishart distributed: W �

WC
N (K;�). Then, the (N � N) matrix W�1 is complex

inverse Wishart distributed with K degrees of freedom and

parameter matrix��1: W�1 �WC
N

�1 �
K;��1

�
. In [1] the

pdf of the real inverse Wishart distribution is calculated. In
the following part a derivation of the distribution of the pdf
of the complex inverse Wishart distribution is presented.
The elements ofW�1 are denoted by W ij (i; j = 1; : : : ;N).
The transformation rule for pdfs is given by

f
W�1 (W

�1) =

����det
�
@v

@w

����� fW(W�1);

where

v =
�
W

11
; : : : ;W

NN
;ReW 12

; ImW
12
; : : : ;

ReWN�1;N
; ImW

N�1;N
�
0



and

w = (W11; : : : ;WNN ;ReW12; ImW12; : : : ;

ReWN�1;N ; ImWN�1;N )
0

:

Using the formulae @W�1

@�
= �W�1 @W

@�
W

�1 and

vec
�
W

�1@W

@�
W

�1
�
=
�
W

�10

W

�1
�
vec

�
@W

@�

�
;

leads to����det
�
@v

@w

����� = 2�N(N�1)=2 det
�
W

�10

W

�1
�
�����det

�
vec
�
@W

@w1

�
; : : : ; vec

�
@W

@wN2

������ :
We obtain for @W

@�

@W

@�
=

(
eie

0

i : for � = Wii

eie
0

j + eje
0

i : for � = ReWij

j(eie
0

j � eje
0

i) : for � = ImWij

:

ei is a real N dimensional unit vector. Therefore, it can be
shown that����det

�
vec

�
@W

@w1

�
; : : : ; vec

�
@W

@wN2

������ = 2N(N�1)=2
:

Using det
�
W

�10 
W�1
�

= det
�
W

�10
�N

det
�
W

�1
�N

and the pdf of the complex Wishart distribution gives for
W

�1 positiv de�nite

fW�1 (W
�1) =

�
detW�1

�K+N

I(�)
exp

�
� tr

�
�
�1
W

�1
��

and fW�1(W�1) = 0 for W�1 not positiv de�nite, with

I(�) = �
N(N�1)=2

NY
n=1

�(K � n+ 1) (det�)K :

4. MOMENTS OF WISHART DISTRIBUTED

MATRICES

For real random vectors it is well known that the cf can
be k times continuously di�erentiated if the corresponding
moments exist. Multiplying the kth derivative of the cf by
j�k and evaluating the resulting expression for argument
zero gives the correponding kth moment. But in this paper,
we are interested in moments of the complex elements of S.
The di�erentiation of �S(�) with respect to �ij for i 6= j
is not allowed because � is a hermitian matrix and the
Cauchy-Riemannian di�erential equations are not satis�ed
if the element �ji is complex di�erentiated with respect to
�ij. The following part shows that the di�erentiation of the
cf �S(�) with respect to elements �ij is possible if real and
imaginary parts are treated separately.
We start by showing that the function tr(S�) in

�S(�) = E exp (j tr(S�)) (1)

is real. Using Sij = SRij + jSIij and �ij = �Rij + j�Iij gives

tr(S�) =

NX
j;k=1

Sjk�kj

=

NX
j=1

S
R
jj�

R
jj + 2

NX
j<k

j;k=1

�
S
R
jk�

R
jk + S

I
jk�

I
jk

�
;(2)

where R and I denote the real and imaginary part, respec-
tively. Equation (2) can be used to determine the derivative
of �S(�) with respect to the real and the imaginary part
of �ik:

@�S(�)

@�Rik

����
�=0

= j

�
ESRii ; i = k

2 ESRik ; i 6= k
(3)

;
@�S(�)

@�I
ik

����
�=0

= j

�
0; i = k

2 ESIik ; i 6= k
: (4)

This leads to�
@�S(�)

@�Rik
+ j

@�S(�)

@�Iik

�
�=0

= j ESik

n
1; i = k
2; i 6= k

: (5)

The cf (1) can be di�erentiated with respect to the real and
the imaginary part of �ik. Let � a real parameter of the
matrix A then:

@jAj

@�
= jAj tr

�
A

�1 @A

@�

�
: (6)

Using (6) we obtain�
@�S(�)

@�Rik
+ j

@�S(�)

@�Iik

�
�=0

= j�S(�) tr

�
(��1

� j
1

K
�)�1

�
�

@�Rik
+ j

@�

@�Iik

������
�=0

= j�ki

n
1; i = k
2; i 6= k

: (7)

Combining (5) and (7) gives the �rst moment E Sik = �ki:
A similar approach can be used to obtain the second mo-
ment. The procedure can be signi�cantly simpli�ed by in-
troduction of a formal di�erentiation:

@�

@�ik
= eie

0

k: (8)

When using (8) we do not mean complex di�erentiation, �ik
and �ki are regarded as two di�erent variables, see also [2].
We can simply write

ESik =
1

j

@�S(�)

@�ki

����
�=0

= E

�
Ski exp

�
j tr(S�)

������
�=0

= �ik: (9)

For higher order moments we obtain the following results.

Second Moment:

ESijSkl = �
@2�S(�)

@�ji@�lk

����
�=0

= �ij�kl +
1

K
�kj�il:



Third Moment:

E SijSklSmn = �
1

j

@3�S(�)

@�ji@�lk@�nm

����
�=0

=

�ij�kl�mn +
1

K
(�mj�in�kl + �ml�kn�ij+

�kj�il�mn) +
1

K2
(�kj�in�ml +�kn�mj�il) :

Fourth Moment:

ESijSklSmnSop =
@4�S(�)

@�ji@�lk@�nm@�po

����
�=0

=

�ij�kl�nm�op +
1

K
(�oj�ip�kl�mn +�ij�ol�kp�mn+

�ij�kl�on�mp +�op�mj�in�kl + �op�ml�kn�ij+

�op�mn�il�kj) + O

�
1

K2

�

Using these relations the moments of complex Wishart dis-
tributed matrices up to order four can be easily derived.
The following formulae are examples:

ES = � (10)

E tr(ASBS) = tr(A�B�) +
1

K
tr(A�) tr(B�) (11)

E
�
tr(AS) tr(BS)

�
= tr(A�) tr(B�) +

1

K
tr(A�B�)

(12)

E

�
tr(ASBS) tr(CS)

�
= tr(A�B�) tr(C�) +

1

K

�
tr(A�B�C�) + tr(A�C�B�) +

tr(A�) tr(B�) tr(C�)
�
+O

�
1

K2

�
(13)

E tr(ASBSCSDS) = tr(A�B�C�D�) +

1

K

�
tr(A�) tr(B�C�D�) + tr(B�) tr(A�C�D�) +

tr(C�) tr(A�B�D�) + tr(D�) tr(A�B�C�) +

tr(A�B�) tr(C�D�) + tr(B�C�) tr(D�A�)

�
+O

�
1

K2

�
(14)

E
�
tr(ASBS) tr(CSDS)

�
=

tr(A�B�) tr(C�D�) +
1

K

�
tr(A�B�C�D�) +

tr(A�C�D�B�) + tr(A�B�D�C�) +

tr(A�D�C�B�) + tr(A�B�) tr(C�) tr(D�) +

tr(C�D�) tr(A�) tr(B�)
�
+ O

�
1

K2

�
(15)

E
�
tr(AS) tr(BS) tr(CSDS)

�
=

tr(A�) tr(B�) tr(C�D�) +

1

K

�
tr(A�) tr(B�) tr(C�) tr(D�) +

tr(A�C�) tr(B�D�) + tr(A�C�D�) tr(B�) +

tr(A�D�C�) tr(B�) + tr(B�C�D�) tr(A�) +

tr(B�D�C�) tr(A�)
�
+ O

�
1

K2

�
(16)

5. MOMENTS OF COMPLEX INVERSE

WISHART DISTRIBUTED MATRICES

The moments of inverse complex Wishart distributed ran-
dom matrices can be calculated without knowledge of the
pdf or the cf. In [5] and [6] an identity is given by which mo-
ments of real Wishart and inverse real Wishart distributed
random matrices can be calculated. In this paper we use
this identity. We derive a simpli�ed form of the identity for
the calculation of the moments of interest. We de�ne the
real matrices

WR =
h
ReW �ImW
ImW ReW

i
;

W
�1
R =

�
ReW�1 �ImW�1

ImW
�1 ReW�1

�
;

and denote the elements of WR and W
�1
R by WR;ij and

W
ij
R (i; j = 1; : : : ; 2N), respectively. Then, the following

corollary can be proven [7].

Corollary: Let all moments of the complex random vari-

ables Wa
1
b
1 (a1; b1 = 1; : : : ;N) exist up to order

J + 1. The function g : CN(N+1)=2 ! C is de�ned

by g =
QI

i=1
Waibi with I � J . If real and imagi-

nary part of g ful�ll the conditions of Stokes theorem
as described by theorem 2:1 in [6] then:

E
�
g�ba

�
= �

IX
j=1

IY
i=1

i6=j

W
aibi
R W

aja

R W
bbj
R +(K�N)E

�
gW

ba
�
:

(17)

Using relation (17) we can determine the moments of com-
plex inverse Wishart distributed matrices.

First Moment: Use equation (17) with g = 1, a = i, b =
j:

EW
ji =

1

K �N
�ji

: (18)

Second Moment: Using g = W ij and a = k, b = l leads
to

1

K �N
�ij

�
lk
= �EW

ik
W

lj
+ (K �N)EW

ij
W

lk
:

(19)

For g = W lj and a = k, b = i one obtains

1

K �N
�lj�ik = �EW

lk
W

ij + (K �N)EW lj
W

ik
:

(20)
Relations (19) and (20) constitute a linear system

of equations with the two unknowns EW lkW ij and
EW ljW ik. The solution for EW ijW lk is given by

EW ij
W

lk =
�ij�lk + 1

K�N
�lj�ik

(K �N)2 � 1
:



For an integer x and (K �N) >> y we can use

1

(K �N)x
�
(K �N)2 � y

� =

1

(K �N)x+2
+O

�
1

(K �N)x+4

�
(21)

and write

EW
ij
W

lk =
1

(K �N)2
�ij�lk +

1

(K �N)3
�lj�ik

+O

�
1

(K �N)4

�
: (22)

Third and Fourth Moment: The procedure used for
derivation of the second moment can be applied for
the calculation of the third and fourth moment by ap-
propriate choice of g and a; b. Then a system of 4 and
12 equations with 5 and 12 unknowns is obtained, re-
spectively [8]. The solution of these linear equation
systems gives:

EW
km

W
nj
W

il =
1

(K �N)3
�km�nj�il +

1

(K �N)4

�
�kj�nm�il + �nj�kl�im+

�ij�km�nl
�
+O

�
1

(K �N)5

�
: (23)

EW ip
W

oj
W

kn
W

ml =
1

(K �N)4
�ip�oj�kn�mp +

1

(K �N)5

�
�ip�on�kj�ml +�ip�kn�ol�mj +

�ip�mn�oj�kl +�in�kp�oj�ml +

�il�oj�kn�mp +�op�kn�ij�ml
�
+O

�
1

(K �N)6

�
:(24)

Using the �rst moment (18) and the approximations of the
second to fourth moment (22) to (24) the following identi-
ties can be derived [8].

ES�1 =
K

K �N
�
�1 (25)

E tr(AS�1BS�1) =
K2

(K �N)2
tr(A��1

B�
�1) +

K2

(K �N)3
tr(A��1

) tr(B�
�1
) +O

�
K2

(K �N)4

�
(26)

E
�
tr(AS�1) tr(BS�1)

�
=

K2

(K �N)2
tr(A��1) tr(B��1) +

K2

(K �N)3
tr(A��1

B�
�1) +O

�
K2

(K �N)4

�
(27)

E
�
tr(AS

�1
BS

�1
) tr(CS

�1
)
�
=

K3

(K �N)3
tr(A�

�1
B�

�1
) tr(C�

�1
) +

K3

(K �N)4

�
tr(A��1) tr(B��1) tr(C��1) +

tr(A��1
C�

�1
B�

�1) +

tr(A��1
B�

�1
C�

�1)
�
+O

�
K3

(K �N)5

�
(28)

E
�
tr(AS�1BS�1) tr(CS�1DS�1)

�
=

K4

(K �N)4
tr(A��1

B�
�1) tr(C��1

D�
�1) +

K4

(K �N)5

�
tr(A��1

B�
�1
C�

�1
D�

�1) +

tr(A��1
B�

�1
D�

�1
C�

�1) +

tr(A��1
C�

�1
D�

�1
B�

�1) +

tr(A��1
D�

�1
C�

�1
B�

�1) +

tr(A��1
B�

�1) tr(C��1) tr(D��1) +

tr(A��1) tr(B��1) tr(C��1
D�

�1)
�
+

O

�
K4

(K �N)6

�
(29)
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