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ABSTRACT

In this paper we present a pole estimation algorithm which

is based on an overdetermined adaptive IIR �lter with an

additional postprocessing stage to extract the pole locations

from the adaptive weights. The adaptive �ltering algorithm

used, is a pseudo-linear regression algorithm which is solved

by a time-recursive QR decomposition. Two pole classi�ca-

tion schemes are presented to separate the true poles and

the super
uous poles. The classi�cation schemes are based

on the occurrence of pole-zero cancelation and on the pole

movement in the z-plane. Floating point simulations are

presented to demonstrate the performance of the proposed

algorithm.

1. INTRODUCTION

Autoregressive (AR) modeling [1] is an important issue in

many signal processing and control applications. Some ex-

amples are: speech analysis, where the poles of the AR

model determine the formant frequencies and bandwidths

which can then be used further for coding and voice systems;

sensor array processing, where the direction-of-arrival esti-

mation using a linear array can be formulated as an adap-

tive polynomial rooting problem; and biomedical engineer-

ing where the trajectories of the roots of the AR model of

EEG signals have been used to predict the onset of seizure.

Usually these pole locations are calculated in a two step

algorithm where �rst the polynomial coe�cients are esti-

mated using adaptive IIR �ltering techniques such as the

full gradient, simpli�ed gradient RPE algorithm [2] or even

Feintuch's LMS algorithm [3] and then the roots are calcu-

lated using standard factorization schemes for polynomials

such as M�uller's Method [4].

One problem which causes these algorithms to fail is that

if the poles to be identi�ed are located too close together;

then these poles are indistinguishable due to the inherent

process noise of these gradient based algorithms and due

to observation noise in the signals. Another problem which

arises with the adaptive IIR �ltering techniques is the po-

tential danger of instability as the time-varying poles of the

adaptive system might migrate outside of the stability re-

gion and cause the algorithm to diverge.

In this paper we review brie
y in Sect. 2.1. the adaptive

IIR �ltering algorithm used, which is based on a pseudo-

linear regression and a time-recursive QR decomposition.

More details on the derivation and performance of this al-

gorithm can be found in [5, 6, 7]. This algorithm is then

used in an overdetermined system identi�cation setup to

identify the poles of the unknown system. As the algorithm

is overdetermined more poles and zeros are calculated than

are actually present in the unknown system and therefore

classi�cation schemes have to be developed to separate the

true poles from the super
uous poles. The information used

for this separation is, in the noise-free case, that unused

pole-zero pairs cancel and, in the noisy case, that true poles

have a smaller variance than super
uous poles which move

randomly in the z-plane. In Sect. 2.2., these two classi�-

cation schemes are presented which are used to extract the

poles from the information originating from the adaptive al-

gorithm. In Sect. 2.3. considerations of the applicability of

multirate schemes are presented which enhance the quality

of estimation and the robustness of the proposed algorithm

to observation noise. In Sect. 3. simulation results are pre-

sented to show the performance of the proposed algorithm.

2. DERIVATION

2.1. Adaptive IIR Filter

An adaptive IIR �lter in output-error formulation tries to

predict a signal y(k) at time k by a linear combination of the

input signal x(k) and past samples of the estimated signal

ŷ(k), i.e.

ŷ(k) =

M�1X
i=0

âi(k)x(k� i) +

L�1X
i=1

b̂i(k � i)ŷ(k � i); (1)

where fâi; b̂ig are the adaptive weights and M and L are

the number of the feedforward and feedback weights, re-

spectively.

The error signal which the algorithm tries to minimize is

de�ned as

e(k) = y(k)� ŷ(k): (2)

In a least squares formulation, the performance criterion

to minimize is an estimate of the power of the error signal

or, for time varying systems, a windowed version thereof.

The performance criterion �(k) can be written as

�(k) =

k�1X
i=0

�
i
e
2
(k � i); (3)

where � is a forgetting factor which is usually chosen slightly

smaller than 1 to make the algorithm \forget" system



changes of the unknown system and transients in the ini-

tialization phase.

This performance criterion �(k) can be written, using ap-

propriate vector de�nitions and approximations [6], in a

matrix equation as
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where k:k2 denotes the Euclidean norm, �(k) is a matrix to

incorperate the forgetting factor, x(k) and ŷ(k) consist of

the input signal x(k) and the estimated output signal ŷ(k),

respectively, and ŵ(k) contains the adaptive parameters.

To minimize now the performance criterion (3), standard

factorization schemes like the singular value decomposition

or the QR decompositions can be used. To obtain an algo-

rithm with a computational complexity of O((M + L)2), a

time recursive QR decomposition as in [8] is used. The

resulting parameters are then used in the classi�cation

schemes to extract the pole positions.

2.2. Classi�cation Schemes

The adaptive �lter produces at each time instant M � 1 ze-

ros and L�1 poles, which are, as the algorithm operates in

an overdetermined setup, more than exist in the unknown

system. Close examinations of the poles and zeros for each

time step and over time have shown two main characteris-

tics:

(a) In a low observation noise environment, super
uous

poles and zeros cancel for each time step and move

randomly in the z-plane (c.f. Figs. 2 and 3);

(b) In an environment with a higher observation noise, the

super
uous poles and zeros do not cancel any more but

still exhibit a large variance (c.f. Figs. 4 and 5).

Based on these two observations, two di�erent classi�ca-

tion schemes have been used to identify the poles. The �rst

scheme is based on the fact that poles and zeros cancel in a

low SNR environment. This scheme can be represented as

1. Operate the adaptive algorithm for the system identi-

�cation.

2. Calculate the pole and zero locations for each time in-

stant k using polynomial rooting techniques.

3. Cancel poles and zeros which are in close vicinity for

each time instant k.

4. Eliminate outliers.

5. Perform time averaging to obtain good estimates.

The second scheme is based on the fact that existing poles

show a small variance and only involves the calculated pole

locations:

1. Operate the adaptive algorithm for the system identi-

�cation.

2. Calculate the pole locations for each time instant k

using polynomial rooting techniques.

3. Sort poles according to variance.

4. Perform time averaging to obtain good estimates.

Simulation results show that the �rst scheme works bet-

ter in environments with a low level of observation noise

whereas the second scheme works better under conditions

with a higher level. This is caused by the fact that with

a low level of observation noise, some of the super
uous

poles also exhibit the property of a low variance in their

movements.

The second scheme performs well under observation noise

until the observation noise level is high enough to cause

closely located poles to \blend" into each other, i.e. become

indistinguishable. One possible solution is to apply multi-

rate techniques which are discussed in Section 2.3..

Another important fact is that the algorithm tries to

evenly distribute the poles around the unit circle and there-

fore the closer together the poles of the unknown system are

located, the higher is the order of the adaptive �lter.

2.3. Multirate Considerations

To increase the resolution of the proposed technique and

the robustness towards observation noise, these techniques

can be used in a decimated setup. Therefore, �rst, the

two input signals have to be �ltered so that only the band

of interest is contained in them and then they have to be

decimated with a decimation factor D, whereby the level of

aliasing has to be kept small to enable the adaptive �lter

to adapt correctly. This can be ensured by an appropriate

choice of D as:

If [fl; fu] is the occupied frequency range of a sig-

nal, where 0 � fl < fu � 1 are the normalized

lower and upper band edges, and D is the subsam-

pling ratio applied to the signal, then, in order to

keep the aliasing small, the subsampling ratio D

has to be chosen in such a way that the numbers

of the set
�

1
D
;
2
D
; : : : ;

D�1
D

	
are not contained in

[fl; fu], i.e.

�
1

D
;
2

D
; : : : ;

D � 1

D

�
=2 [fl; fu] : (5)

Under these conditions, the adaptive �lter will identify

the poles at the locations z 7! z
D. This mapping sepa-

rates the poles further as the angles of the poles get multi-

plied by D and therefore allow a higher level of observation

noise. The second e�ect is that, as the radii of the poles

are smaller then 1, the poles move further away from the

unit circle which facilitates convergence and estimation ac-

curacy of the algorithm. Another advantage is that as the

poles are distributed more evenly over the frequency range,

the adaptive �lter needs a lower estimation order than in a

non-decimated setup.
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Figure 1. Unknown System, Pole-Zero Plot

i ri �i(pi)

0 0:97 �0:14

1 0:96 �0:13

2 0:95 �0:12

Table 1. Unknown System, Exact Pole Locations

3. SIMULATIONS

To demonstrate the performance of the proposed algorithm,


oating point simulations in a noisy and noise-free environ-

ment are presented for the non-decimated case in Section

3.1. and for the decimated case in Section 3.2.

The unknown system used for the simulations was always

the 6th-order AR model whose pole-zero plot is shown in

Fig. 1 and whose exact pole locations are shown in Tab. 1,

where ri is the radius of the pole i and �i is the angle.

It can be seen that this unknown system has poles located

close to the unit circle, close to each other and in the low

frequency region. The driving input noise and the obser-

vation noise were independent and white, with Gaussian

distributions. The forgetting factor was set to � = 0:999

which is equivalent to a e�ective window length of about

10000 samples.

3.1. Non-decimated Simulations

In Figs. 2 and 3 the calculated pole and zero locations, re-

spectively, of an observation noise free simulation of the

algorithm are shown for the last 1000 iterations of the sim-

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im
ag

(z
)

Real(z)

Figure 2. Noise-Free Simulation Results, Poles
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Figure 3. Noise-Free Simulation Results, Zeros
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Figure 4. Noisy Simulation Results, Poles, SNR

= 70 dB

ulations. The adaptive �lter consists of L = 30 feedforward

and M = 30 feedback weights. It can be seen that the su-

per
uous poles and zeros cancel and the poles of interest

show a small variance. In Tab. 2 it was recorded that these

pole estimations yield a variance between �89 dB and �83

dB.

In Figs. 4 and 5 the calculated pole and zero location for

the same setup but with signal to observation noise ratio

of 70 dB are shown. Now it can be seen that the poles

move away from the zeros and that the poles of interest

show a small variance, i.e. a small movement in the z-plane.

In Tab. 2 it can be seen that these poles have a variance

between �60 dB and �52 dB.

3.2. Decimated Simulations

In this section, a comparison between the non-decimated

setup and the decimated setup is performed. The algorithm

was therefore applied to the same system but this time the

input signals were �rst �ltered to select the frequency band,

then uniformly decimated by D and �nally the algorithm

was used to estimate the pole positions.

For the decimation by D = 2, the �lter for the frequency

selection was a 100 taps linear-phase FIR �lter with a nor-

malized cut-o� frequency of 0:44 which yields a maximum

aliasing level of �90 dB. The �lter order of the adaptive

�lter has been chosen in this case to be L = 20 feedforward

and M = 20 feedback weights.
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Figure 5. Noisy Simulation Results, Zeros, SNR

= 70dB

SNR Variance (dB) Variance (dB) Variance (dB)

(dB) D = 1 D = 2 D = 4

L =M = 30 L =M = 20 L =M = 10

1 [�89;�83] [�103;�97] [�101;�89]

70 [�60;�52] [�83;�74] [�80;�72]

64 no result [�77;�68] [�74;�67]

58 no result [�71;�62] [�67;�60]

52 no result [�65;�56] [�61;�56]

46 no result [�58;�49] [�57;�51]

40 no result [�52;�43] [�52;�44]

34 no result no result [�47;�39]

27 no result no result no result

Table 2. Estimation Variance for the decimation D

and the feedforward and feedback weights L and M

respectively

For the decimation by D = 4, the �lter for the frequency

selection was a 100 taps linear-phase FIR �lter with a nor-

malized cut-o� frequency of 0:2 which yields a maximum

aliasing level of �80 dB. The order of the adaptive �lter

has been chosen in this case to be L = 10 feedforward and

M = 10 feedback weights.

The results for the two decimated setups (D = 2 and

D = 4) and the non-decimated setup (D = 1) are shown

in Tab. 2. Recall that the non-decimated setup fails when

the signal to observation noise level exceeds 70 dB whereas

the decimated setup of D = 2 and D = 4 give useful results

up to a level of 40 dB and 34 dB, respectively. For the

observation noise levels where both cases give results the

decimated setup with D = 4 gives an improvement of 20

dB over the non-decimated setup as well as the setup with

a decimation of D = 2.

4. CONCLUSIONS

In this paper we proposed an estimation algorithm for

lightly damped low frequency poles. The algorithm was

based on a least squares pseudo-linear regression IIR �lter-

ing algorithm and two classi�cation schemes to extract the

pole locations from the adaptive weights. Then, the use of

the algorithm in a decimated environment was evaluated

and it was shown that a reduction in estimation error and

an increase in robustness towards observation noise can be

achieved. Finally, 
oating point simulations are shown to

illustrate the performance of the proposed algorithm.

More generally the algorithm exhibits the ability to iden-

tify poles located very close together and close to the unit

circle.
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