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ABSTRACT

This paper considers the problem of estimating the pa-
rameters of two-dimensional moving average random �elds.
We �rst address the problem of expressing the covariance
matrix of a moving average random �eld, in terms of the
model parameters. Assuming the random �eld is Gaus-
sian, we derive a closed form expression for the Cramer-Rao
lower bound on the error variance in jointly estimating the
model parameters. A computationally e�cient algorithm
for estimating the parameters of the moving average model
is developed. The algorithm initially �ts a two-dimensional
autoregressive model to the observed �eld, then uses the es-
timated parameters to compute the moving average model.

1. INTRODUCTION

The problem of estimating the parameters of a two-
dimensional (2-D) real valued discrete and homogeneous
moving average random �eld, from a single observed re-
alization of the �eld is of great theoretical and practical
importance. For example, it arises quite naturally in terms
of estimating the parameters of the purely indeterministic
component of natural textures in images [6], as well as in
image segmentation and restoration problems.
More speci�cally, in [6] we have presented a texture model

which is based on the 2-D Wold-type decomposition of ho-
mogeneous random �elds, [2]. In this framework, the tex-
ture �eld is assumed to be a realization of a regular ho-
mogeneous random �eld, which can have a mixed spec-
tral distribution. The texture is represented as a sum of
purely indeterministic, harmonic, and a countable number
of evanescent �elds. The harmonic and evanescent compo-
nents of the �eld result in the structural attributes of the
observed realization, while the purely indeterministic com-
ponent is the structureless, \random looking" component
of the texture �eld.
The general problem of estimating the parameters of ran-

dom �elds has received considerable attention. Most ap-
proaches for estimating the parameters of purely indeter-
ministic random �elds, concentrate on �tting 2-D auto-
regressive (AR) models to the observed �eld. Least squares
solution of the set of 2-D normal equations is a method
widely used in various image processing applications like
image restoration and segmentation. A Levinson-type al-
gorithm for solving the set of 2-D normal equations of a
continuous support non-symmetrical half plane (NSHP) AR
model is derived in [5]. The asymptotic Cramer-Rao bound
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for the parameters of a Gaussian purely indeterministic �eld
was derived by Whittle [4].

In this paper we propose a computationally e�cient al-
gorithm for estimating the parameters of MA random �elds
using a �nite dimension, single observed realization of this
�eld. The algorithm is an extension to two-dimensions of
Durbin's \MA by AR" method, [1], for estimating the pa-
rameters of scalar moving average processes. The algorithm
has two stages. In the �rst stage, a two-dimensional NSHP
AR model is �t to the observed �eld, using a least squares
solution of the 2-D normal equations, or alternatively by us-
ing a �nite support version of Marzetta's [5] Levinson type
algorithm. In the second stage, the estimated parameters
of the AR model are used to compute the parameters of
the moving average model, through a least squares solution
of a system of linear equations. The overall algorithm is
computationally e�cient.

We also address here, the problem of expressing the co-
variance matrix of the observed �eld in terms of the MA
model parameters. Then, assuming the MA �eld is Gaus-
sian, we employ this result to establish bounds on the
achievable accuracy in jointly estimating the parameters
of the MA modeled purely indeterministic random �eld.
We derive closed form exact expression for the Cramer Rao
lower bound on the achievable estimation accuracy. Using
the expressions of the covariance matrix in terms of the MA
model parameters, we then derive a maximum likelihood
algorithm for these. The previously derived \MA by AR"
algorithm is used for initialization of the multi-dimensional
search involved in the maximum likelihood estimation algo-
rithm.

The paper is organized as follows. In section 2 we consider
the problem of representing the covariance matrix of the
observed MA �eld in terms of the MA model parameters. In
section 3 a closed form expression for the CRB on the error
variance in jointly estimating the MA model parameters,
is derived. In section 4 we develop the computationally
e�cient \MA by AR" estimation algorithm. In section 5
we present some numerical examples.

2. THE PARAMETRIC REPRESENTATION
OF THE MA FIELD AND ITS

COVARIANCE MATRIX

Let fy(n;m); (n;m) 2 Z2g, be a real valued, purely-
indeterministic, homogeneous random �eld. Then, [3],
y(n;m) can be uniquely represented by

y(n;m) =
X

(0;0)�(k;`)

b(k; `)u(n� k;m� `) (1)



where
P

(0;0)�(k;`)
b2(k; `) <1; b(0; 0) = 1, and fu(n;m)g

is the innovations �eld of fy(n;m)g with respect to the
de�ned total-order de�nition. fu(n;m)g is a white noise
�eld. We therefore conclude that the most general model of
any purely-indeterministic random �eld is the innovations
driven, NSHP support MA model (1).
In practice, the observed random �eld is of �nite di-

mensions. Hence, let fy(n;m) ; (n;m) 2 Dg where D =
f(i; j)j0 � i � S � 1; 0 � j � T � 1g be the observed
random �eld. The MA model (1) is, in general, of in�nite
dimensions. In this paper we restrict our attention to MA
models of �nite dimensional NSHP support. Next, we elab-
orate on expressing the covariance matrix of the observed
2-D MA random �eld in terms of the model parameters.
Assumption 1: The purely-indeterministic �eld is a real

valued MA �eld, whose model is given by (1) with (k; `) 2
SN;M , where SN;M = f(i; j)ji = 0; 0 � j �Mg

S
f(i; j)j1 �

i � N;�M � j � Mg, and N;M are a-priori known. The
driving noise of the MA model is a zero mean, real valued
white noise �eld with variance �2. Thus, (1) is replaced by

y(n;m) =
X

(k;`)2SN;M

b(k; `)u(n� k;m� `) : (2)

The parameter vector of the observed �eld fy(n;m)g is
given by

� =

�
�
2
; b(0; 1); : : : ; b(0;M); b(1;�M); : : : ; b(1;M); : : : ;

b(N;�M); : : : ; b(N;M)

�T
: (3)

Let 0k denote a k-dimensional row vector of zeros. Let
also,

b0 = [0M ; 1; b(0; 1); : : : ; b(0;M);0T�1] ;

b1 = [b(1;�M); : : : ; b(1; 0); : : : ; b(1;M);0T�1] ;

...
...

bN = [b(N;�M); : : : ; b(N; 0); : : : ; b(N;M)] ; (4)

and
b = [b0;b1; : : : ;bN ] : (5)

Note that b is a (T + 2M) � (N + 1)� (T � 1) dimensional
row vector.
De�ne the following T�(T+2M)�(N+1) banded Toeplitz

matrix

[ �B]i;j =
n
b(j � i+ 1); j � i
0; i < j

; (6)

where b(i) = 0 for i < 0 and i > (T+2M)�(N+1)�(T�1).
Finally, let B be the following ST � (T +2M)(S+N) block
matrix2
66664

�B 0T�(T+2M) : : : 0T�(T+2M)

0T�(T+2M)
�B : : : 0T�(T+2M)

. . .

0T�(T+2M) : : : �B 0T�(T+2M)

0T�(T+2M) : : : 0T�(T+2M)
�B

3
77775
(7)

Hence the covariance matrix of the observed �eld is given
in terms of the MA model parameters by

� = �
2
BB

T
: (8)

Note that (7)-(8) can be made valid for any type of support
of the MA model, simply by rede�ning b and B.

3. THE CRB ON THE MA MODEL
PARAMETERS

Assume that the driving noise of the NSHP MA model is a
zero mean, real valued Gaussian white noise �eld with vari-
ance �2. Hence the observed �eld fy(n;m)g is also Gaus-
sian. The general expression for the Fisher Information Ma-
trix (FIM) of a real, zero mean, Gaussian process is given
by

[J(�)]i;j =
1

2
tr

�
�
�1 @�

@�i
�
�1 @�

@�j

�
; (9)

where � is the observation vector covariance matrix, and
[J(�)]i;j denotes the (i; j) entry of the matrix J.
Note that

@ �B

@b(k; `)
= �U(k;`) (10)

where �U(k;`) is the up shift matrix

[ �U(k;`)]i;j =

n
1; j � i = k(T + 2M) +M + `
0; otherwise.

(11)

Taking the partial derivatives of � with respect to the MA
model parameters we have for all (k; `) 2 SN;M n f(0; 0)g

@�

@b(k; `)
= �

2

�
U(k;`)B

T +BU
T
(k;`)

�
; (12)

where U(k;`) is the following ST � (T + 2M)(S +N) block
matrix2
66664

�U(k;`) 0T�(T+2M) : : : 0T�(T+2M)

0T�(T+2M)
�U(k;`) : : : 0T�(T+2M)

. . .

0T�(T+2M) : : : �U(k;`) 0T�(T+2M)

0T�(T+2M) : : : 0T�(T+2M)
�U(k;`)

3
77775 :

(13)
Also,

@�

@�2
=

1

�2
� : (14)

Substituting (8), (12), and (14) into (9) we obtain a closed
form expression for the FIM of 2-D Gaussian MA random
�elds.

4. 2-D MOVING AVERAGE PARAMETER
ESTIMATION

The parameter estimation algorithm which we present in
this section is an extension to two-dimensions of the algo-
rithm proposed by Durbin, [1], for estimating the parame-
ters of scalar MA processes. The idea is to �t a NSHP AR
model to the observed �eld, and then using the estimated
AR parameters to estimate the MA model parameters.
It was shown by Whittle, [4], that any purely-

indeterministic random �eld whose spectral density is ana-
lytic in some neighborhood of the unit bicircle and strictly
positive on the unit bicircle, can be represented by a NSHP
AR model, of generally in�nite dimensions. This result was
later extended and was shown to hold even under milder
conditions, [3]. Hence, any 2-D purely-indeterministic mov-
ing average random �eld that satis�es the foregoing condi-
tions can be �t with a NSHP AR model. Since parameter
estimation algorithms of 2-D AR random �elds are available
(e.g., [5]), we employ such an algorithm as the �rst step of
the proposed procedure for estimating the parameters of
the MA �eld.



Let SP;Q be de�ned similarly to SN;M , and let SP;Q n
f(0; 0)g be the NSHP support of the MA �eld AR model.
In general, SP;Q is of in�nite dimensions. In practice, we
must choose �nite values for P and Q, and hence an ap-
proximation error is introduced. It is obvious that such a
method is necessarily inconsistent, even if the covariance
function of the observed �eld is a-priori known, since no
MA �eld can be exactly modeled by a �nite support AR
model. However the bias of the estimates can be made ar-
bitrarily small by su�ciently increasing the support of the
AR model, SP;Q. Therefore, we choose P and Q such that
P >> N and Q >> M , i.e., the �nite support of the AR
model is chosen to be much larger than that of the MA
model. More speci�cally, let the 2-D, �nite support, MA
model of the data be given by (2), and let the approxi-
mated, �nite support, NSHP AR model of the same �eld
be given by

y(n;m) = �
X

(k;`)2SP;Qnf(0;0)g

a(k; `)y(n�k;m�`)+u(n;m) :

(15)

De�ne B(z1; z2) =
P

(k;`)2SN;M
b(k; `)z�k1 z�`2 and

A(z1; z2) =
P

(k;`)2SP;Q
a(k; `)z�k1 z�`2 , where a(0; 0) = 1.

We therefore have the approximate relation

A(z1; z2)B(z1; z2) � 1 : (16)

Let

~b =

�
b(0; 1); : : : ; b(0;M); b(1;�M); : : : ; b(1;M); : : : ;

b(N;�M); : : : ; b(N;M)

�T
: (17)

Similarly, let

a0 = [a(0; 1); : : : ; a(0; Q);0M ]
T
; (18)

a1 = [a(1;�(Q� 1)); : : : ; a(1; 0); : : : ; a(1;Q); 0M ]T ; (19)

ak = [0M ; a(k;�Q); : : : ; a(k; 0); : : : ; a(k; Q);0M ]T (20)

for 2 � k � P , and let

a =
�
a
T
0 ;a

T
1 ; : : : ;a

T
P ;0

T
[2(Q+M)+1]N

�T
: (21)

We can now set the following linear system of equations
by equating the coe�cients of identical powers of z�k1 z�`2

A~b+ a = e ; (22)

where e is the approximation error vector, and A is the

following block matrix

A =

2
66666666666666666664

A0
0 W W : : : W

�A1
�A0 Z : : : Z

A0
2 A1 A0 : : : V
...

...
. . .

...
...

... V

A0
N AN�1 : : : : : : A0

...
...

...
A0
P AP�1 : : : : : : AP�N

0[2(Q+M)+1]�M AP : : : : : : AP�N�1

0[2(Q+M)+1]�M V AP : : : AP�N�2

...
...

. . .
...

0[2(Q+M)+1]�M V : : : AP

3
77777777777777777775

;

(23)
where we de�ne W = 0(Q+M)�(2M+1),
Z = 0(2Q+M)�(2M+1) and V = 0[2(Q+M)+1]�(2M+1). Each
of the blocks of A is a Toeplitz matrix. The structure of
the blocks is given below.

A0 =

2
6666666666666664

0Q�(2M+1)

1 0 : : : 0
a(0; 1) 1 : : : 0

...
. . . 0

...
... 1

...
...

a(0;Q) : : : a(0;Q� 2M)
...

. . .
...

0 : : : 0 a(0; Q)

3
7777777777777775

;

(24)
and for 1 � k � P ,

Ak =

2
6666666666664

a(k;�Q) 0 : : : 0
a(k;�(Q� 1)) a(k;�Q) : : : 0

...
. . . 0

...
... a(k;�Q)

...
...

a(k;Q) : : : a(k; Q� 2M)
...

. . .
...

0 : : : 0 a(k;Q)

3
7777777777775

:

(25)
Note that the matrices Ak, 0 � k � P , are all [2(Q+M)+
1]� (2M + 1) dimensional matrices. In addition, let �A0 be
the (2Q+M)� (2M + 1) sub block of A0 consisting of its

2Q+M lower rows, and let A0
0 be the (Q+M)�M lower

right sub block of A0. Similarly, let �Ak, 1 � k � P , be the
(2Q+M)�M lower right sub block of Ak , and

A
0
k =

�
0(M+1)�M

�Ak

�
: (26)

The MAmodel parameters can now be found by minimizing
the sum of the squared approximation error. The solution
to this linear least squares problem is

~b = �
�
A
T
A
��1

A
T
a : (27)
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Figure 1. The ratio of the squared root of
the CRLB to the spectral density function
for the �eld whose parameters are listed in
Table 1.

In the actual solution for the MA model parameters, the pa-
rameters of the AR model, fa(k; `)g, are replaced by their
estimated values, obtained by solving the corresponding set
of 2-D normal equations, using the estimated covariance
function.
Finally, note that the proposed algorithm is derived using

no a-priori assumptions regarding the probability density
function of the observed �eld. It is therefore applicable to
Gaussian moving average �elds, as well as to non-Gaussian
ones.
The main advantage of the \MA by AR" algorithm of the

previous section is that it requires only the solution of two
sets of linear systems of equations (one to estimate the AR
parameters by solving the set of 2-D normal equations, and
the second is the solution (27) to (22)). In particular there
is no need for an iterative solution. However, the estimates
are biased and inconsistent. Hence, improved estimation
algorithms are required in cases where the performance of
the \MA by AR" algorithm is not acceptable. The \MA
by AR" algorithm can then serve to initialize a more so-
phisticated algorithm. One such estimator is the maximum
likelihood estimator (MLE) for Gaussian moving average
�elds, [7].

5. NUMERICAL EXAMPLES

To gain more insight into the performance of the proposed
algorithms we resort to numerical evaluation and Monte-
Carlo simulations of some speci�c examples.
It is shown in [7] that the shape of the CR bound on

the error variance in estimating the spectral density of the
�eld as a function of frequency, matches the shape of the
MA �eld spectral density. In order to further investigate
the dependence of the CRB on the shape of the spectral
density, we depict in Fig. 1 the normalized CRB, i.e., the
ratio of the squared root of the CRB to the spectral density
function of the MA �eld. We note that the lower bound
on the error variance in estimating the MA �eld spectral
density function is relatively higher in those frequency re-
gions where the MA model transfer function is close zero.
In other words, the estimation of the MA �eld spectral den-
sity function is less accurate in frequency regions where the
spectral density function is close to zero than in regions of
higher spectral density.

Table 1. Estimation results of the MA model pa-
rameters for di�erent data sizes, using the \MA
by AR" algorithm. The approximating NSHP AR
model support is S10;10 .

Parameters S = 30 ; T = 30 S = 100 ; T = 100

bias std bias std

�2 1 0.00847 0.04759 0.05509 0.01644

b(0;1) -0.9 0.16585 0.02303 0.08664 0.00523

b(1;�1) 0.1 -0.02929 0.03030 -0.01317 0.00903

b(1;0) -0.5 0.04523 0.03703 0.01500 0.01123

b(1;1) 0.4 -0.09762 0.03268 -0.04679 0.00842

Consider the �eld whose parameters are listed in Table
1. Using the numerical results, we conclude that for the
\MA by AR" algorithm, increasing the dimensions of the
approximating AR model support reduces the bias of the
estimated MA model parameters, and increases the stan-
dard deviation of the estimation error. It is shown in [7]
that for small data sizes the ML algorithm is slightly bi-
ased. However, its bias is considerably lower than that of
the \MA by AR" algorithm which is used for its initializa-
tion. By increasing the dimensions of the observed �eld,
the bias of the estimates drops sharply, since the estimates
of the covariance function are more accurate.
We therefore conclude that the bias of the \MA by

AR" algorithm decreases when increasing the dimensions
of the observed �eld, or the dimensions of the approxi-
mating NSHP AR model support. It is also demonstrated
that the \MA by AR" estimator is a good choice for im-
plementing the initialization phase of the maximum likeli-
hood algorithm. Furthermore, as the data size increases,
the maximum likelihood method becomes computationally
prohibitive due to its heavy computational and storage re-
quirements, while the computationally e�cient \MA by
AR" algorithm becomes less biased, and therefore o�ers an
increasingly attractive alternative to ML estimation.
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