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ABSTRACT

In this paper, we analyse the issue of e�ciently using Givens
rotations to perform a more accurate SVD-based subspace
tracking. We propose an alternative type of decomposi-
tion which allows a more versatile use of Givens rotations.
We also show the direct e�ect of the latter on the track-
ing error, and develop a cross-terms cancellation concept
which leads to a class of high performance algorithms with
very low complexity: O(N2) if signal and noise subspaces
are tracked, O(Nr) if only the signal subspace is tracked,
where N is the data vector dimension, and r the number of
sources. Comparative simulation experiments support the
theoretical work.

1. INTRODUCTION

In the application of subspace methods to non-stationnary
signals, one often has to compute an approximate singular
value decomposition (SVD) of a data matrix of growing
dimension, de�ned recursively as

A(k) =

�
�A(k� 1)

xH(k)

�
(1)

where k is the time index, 0 < � < 1 is the forgetting
factor, and x(k) 2 C

N is the incoming measurement vector.
Whereas an exact SVD requires O(N3) operations, Moonen
[1] has proposed an algorithm with a complexity of O(N2)
operations per update which provides a decomposition

A(k) = U(k)�(k)V (k)H (2)

where V (k) is an N �N unitary matrix, U(k) is an k �N

matrix with orthonormal columns and �(k) is an upper-
triangular, almost diagonal matrix. This decomposition is
computed in two steps: (i) a QR step achieved by N Givens
rotations which annihilate the entries of the incoming vec-
tor, and (ii), a Jacobi-type SVD step using N � 1 Givens
rotations along the second diagonal of �(k) to reduce its o�-
norm. Kavcic [2] introduced a noise sphericalized version
of this algorithm, the Noise Average SVD (NASVD), based
on the spherical EVD update from DeGroat [3] and Stew-
art's URV decomposition [4]; it reduces the complexity to
O(Nr) by tracking only an r-dimensional signal subspace.
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Based on the same structure but with a di�erent SVD step,
Rabideau [5] has proposed an algorithm of similar complex-
ity, the RO-FST, which considerably improves the tracking
performance.

All the above algorithms use Givens rotations in a way
which is not proved to be optimal. In this paper, we �rst
propose an alternative type of approximate SVD and then
use it to investigate the e�ect of Givens rotations on the
updating process. Using an innovative convergence strat-
egy, new SVD updating algorithms are derived for both
signal-and-noise and signal-only subspace tracking. Finally,
comparative computer experiments are used to validate the
proposed approach.

2. CONVERGENCE STRATEGY

2.1. A new type of decomposition

Convergence to the exact SVD is closely related to the abil-
ity of the algorithm to diagonalise �(k) faster and to rotate
the approximate singular vectors in the directions of the
exact ones. The Givens rotation can achieve both tasks if
it is judiciously used. We recall that a Givens rotation

matrix G
ijj

� di�ers from an identity matrix only at four

entries: G
ijj

� (i; i) = c, G
ijj

� (i; j) = s, G
ijj

� (j; i) = �s and

G
ijj

� (j; j) = c, where c and s are the cosine and sine of the
angle �.

Suppose that the approximate SVD of A(k�1), de�ned
as in (2), is known and that we want to compute the SVD
of (1). Once we have applied the QR step to eliminate the
new row of A(k) [1], the improvement of the diagonalisation
of �(k) is achieved by applying a series of Givens rotations.
This diagonalisation step, sometimes called SVD step or
re�nement, exists in di�erent 
avours in the litterature. On
one hand, RO-FST uses two series of Givens rotations to
zero alternatively the last column and the last row of �(k).
On the other hand, [1, 2] apply a series of pairs of Givens
rotations on both sides of �(k � 1) as in

�(k) [G
ijj

� ]T�(k)G
ijj

� ; (3)

where j = i + 1; and for each of these pairs, the rotation
angles are computed so as to zero the (i; j) and (j; i) entries.
We call the (i; j) entry the pivot of the rotation.

Both methods are designed so as to maintain �(k) in
an upper-triangular structure and to reduce the o�-norm of
�(k). Yet, a priori, it is not proved that applying rotations



as these methods do is the optimal way to reduce the o�-
norm of �(k) under the constraint of a �xed number of
Givens rotations. We also note that the most important
attribute for �(k) is not to be upper-triangular, but to have
the smallest possible o�-norm, since much of the subspace
approximation error is due to the o�-diagonal terms of �(k).

It can be veri�ed that in (3), the o�-norm of �(k) is
reduced as

off [�(k)]  off [�(k)] � [�(i; j)2 + �(j; i)2] (4)

where �(i; j) is the pivot entry of both rotations. So, in
Moonen-type algorithms, the diagonalisation would be ef-
�cient only if the (i; i + 1) entries remain the largest o�-
diagonal entries (in absolute values) throughout the diago-
nalisation process. The larger �(i; j) and �(j; i), the better
the diagonalisation.

This observation immediately leads us to formulate an
algorithm which tracks the position of the maximum o�-
diagonal entry of �(k) before each pair of rotations, so
that rotations are always applied to the largest pivots. By
achieving a better o�-norm reduction, this \Maximum-Search"
algorithm (MS) provides a more accurate tracking, when
compared to Moonen's, NASVD, ROSA, and even RO-FST
algorithm, as will be shown in our simulations in Section 4.
Since o�-diagonal maximums could be located anywhere in
�(k), rotations will be applied in almost random locations
and �(k) will not remain upper-triangular.

Accordingly, the good performance of the MS algorithm,
as observed experimentally, shows that the upper-triangular
structure used in previous algorithms is not required. To
allow the possibility of applying Givens rotations anywhere
in �(k), we need to consider a new type of approximate
SVD, still expressed as in (2), but where �(k) is now almost
diagonal and not speci�cally upper-triangular. We refer to
this decomposition as an UXV .

2.2. Block diagonalisation

Since the search for a single maximum adds a complexity
of N2 logN2 to the overall algorithm complexity, we need
to �nd some practical way to achieve a better subspace
tracking and a good diagonalisation without tracking the
largest o�-diagonal entry's position before each rotation.

After the QR step, the intermediate decomposition is
as in (2) (now using time index k) and needs to be re�ned.
Let us de�ne the following submatrices:

U(k) = [US(k)jUN (k)]; V (k) = [VS(k)jVN (k)]; (5)

and the almost diagonal singular value matrix

�(k) =

�
�S(k) �SN(k)
�NS(k) �N (k)

�
: (6)

The main diagonal of �(k) contains the approximated
singular values which are supposed to be in decreasing or-
der: �(1) > �(2) > � � � > �(N). The singular vectors have
been separated in two sets corresponding to the r largest
and N � r smallest singular values; the signal subspace is
de�ned as the column-span of VS(k). At this point, we have

A(k) �= US(k)�S(k)VS(k)
H+UN (k)�N (k)VN(k)

H+ASN(k)
(7)

where

ASN(k) = US(k)�SN (k)VN(k)
H
+ UN(k)�NS(k)VS(k)

H

(8)
The exact decomposition at time k can be written as

A(k) = U
o
S(k)�

o
S(k)V

o
S (k)

H + U
o
N (k)�

o
N (k)V

o
N (k)

H (9)

where �o
S and �o

N are diagonal submatrices, containing the
exact signal and noise singular values. By comparing (7)
and (9), we see that the approximate expression has the cor-
rect form of an SVD when ASN(k) = 0, which is achieved
when the o�-diagonal blocks are null, i.e. k�SNk = k�NSk =
0. We note that the approximate subspaces are not yet iden-
tical to the exact ones since the submatrices �S and �N are
not diagonal; nevertheless, the block diagonalisation helps
to cancel the cross-interaction between subspaces of di�er-
ent nature and improves the subspace information.

To substantiate this a�rmation, we will now analyse
the direct e�ect of block diagonalisation on the tracking er-
ror. Our goal here is to investigate the e�ect of each Givens
rotation on the signal subspace projector VS(k)VS(k)

H ob-
tained from the tracking algorithm. Recall that this type
of projector is used by MUSIC-like algorithms to estimate
various signal parameters. Let the tracking error be de�ned
as the distance between the approximate and exact signal
subspaces

TE(k) = kV �

S (k)V
�

S (k)
H � VS(k)VS(k)

Hk2 (10)

where \�" stands for \exact decomposition". Similarly, de-
�ne the time variation of the updating process, �VS(k), as
the distance between the approximate signal subspaces at
time k � 1 and k. In Jacobi-type subspace tracking algo-
rithms, the re�nement step transforms the right singular
vectors according to

V (k) V (k)

N�1Y
l=1

G
iljjl
�l

; (11)

where (il; jl) represents the pivot position and �l the an-
gle of the lth Givens rotation. Each Givens rotation a�ects
only the ithl and the jthl right singular vector. Let us note
that in Moonen-type algorithms, we have jl = il + 1. Fi-
nally, we de�ne �l, a measure of the partial alteration of
VS(k�1)VS(k�1)

H that is made by the lth rotation, as the
distance between the approximated signal subspaces before
and after the lth rotation in (11).

Whereas �VS(k) = 0 means either perfect convergence
or a useless algorithm, �l = 0 is the result of an unnecessary
Givens rotation. Furthermore, since each rotation in (11)
helps to improve the diagonalisation of �(k) (consequence
of (4)) and re�ne the decomposition, we intuitively consider
the time variation �VS(k) as a convergence step, while �l

can be viewed as a measure of the contribution of the lth

rotation to �VS(k). Thus, our viewpoint here is that, like
the MS algorithm which reaches greater performance by
performing a better diagonalisation at each rotation, �l

should be as large as possible.
Temporarily denote by U(l�1)�(l�1)V (l�1)H the ap-

proximate decomposition before the lth rotation is applied.
In the same way, de�ne VS(l � 1), VN (l � 1), �S(l � 1),



�N (l�1), �SN (l�1) and �NS(l�1) as in (5) and (6) with
time index k replaced by rotation index l � 1. There are
three possible choices for the location of the pivot in �(l�1),
namely �S(l � 1), �N (l � 1) and �SN(l � 1) (�SN (l � 1)
and �NS(l� 1) being equivalent):

1: r+1 � il < jl � N : the pivot is located in �N (l� 1)
and the rotation a�ects only two noise singular vec-
tors. Since the signal subspace VS(l�1) is unchanged,
we have �l = 0.

2: 1 � il < jl � r: the pivot is located in �S(l� 1) and
the rotation a�ects two vectors of the signal subspace.
The modi�cation of the signal subspace is

VS(l) = VS(l � 1)Gul + VN (l� 1)Gll (12)

where Gul and Gll denote the r � r upper-left and

(N � r) � r lower-left part of G
iljjl
�l

. Here, Gll = 0

and Gul is unitary, so, it is easily shown that even if
two signal vectors are rotated, we still have �l = 0.

3: 1 � il � r and r + 1 � jl � N : the pivot is located
in �SN(l � 1). In that case, one vector is rotated in
each subspace. The signal subspace transformation
is still expressed as in (12), but here, Gll 6= 0 and
Gul is not unitary. As a result, �l > 0 and a positive
contribution is made to the �VS(k).

In summary, during the re�nement, each rotation G
iljjl
�l

modi�es the product VS(k)VS(k)
H and thus contributes to

the time variation �VS(k) if and only if the pivot is cho-
sen in �SN (or �NS). Then, it follows that locating the
pivots in �SN guarantees that the MUSIC detector may be
improved at each rotation; otherwise, the rotations have no
e�ect on the parameters estimates, since the noise subspace
projection VN (k)VN(k)

H = I � VS(k)VS(k)
H remains un-

changed. A further justi�cation is a theorem from Stewart
[6], according to which k�SNk2 can be used to compute an
upper-bound on the tracking error as follows :

TE(k) < ctk�SN(k)k2 (13)

where ct is a constant. Indeed, each rotation in �SN reduces
k�SNk2 by annihilating the (il; jl) and (jl; il) cross-terms
entries, thus reducing the bound.

Moonen-type algorithms, whose pivots are located ex-
clusively on the second diagonal have only one rotation in
�SN (the rth one); this explains why they have a lower con-
vergence rate and thus, a tracking error which often satu-
rates at a higher level.

In the case of partial tracking based on noise subspace
sphericalisation, Householder transformations are introduced
to reduce the complexity of the algorithms. In particular,
since the noise vectors are rotated so that the projection of
the incoming data vector onto the noise subspace only has a
single non-zero component, �SN is reduced to a single col-
umn. Yet, the argumentation described above is the same:
by locating the pivots of the rotation in that column, one
takes advantage of the potential contribution of each rota-
tion and, by reducing the norm of that column, one cancels
the interaction between signal and noise subspaces.

3. PROPOSED ALGORITHMS

Based on the above considerations, we propose a new fam-
ily of algorithms for complete and partial subspace track-
ing: Cross-space Singular Value decomposition (CSVD) and
Noise-Average CSVD (NA-CSVD), since they are based on
the annihilation of the cross-terms, as represented by �SN

in (8).
The major di�erence with the previous algorithms is the

type of decomposition which does not restrict �(k) to be
upper-triangular. The basic idea is to locate pivots in �SN

in order to take advantage of the potential contribution of
each rotation. Tables 1 and 2 show only the main steps of
CSVD and NA-CSVD, all other steps (initialisation, singu-
lar values averaging) being the same.

The CSVD (Table 1) can be initialised with the exact
SVD or for example, with V (0) = I and �(0) = 0, where
I denotes for the N � N identity matrix. The QR step
consists in N transposed Givens rotations represented by
QT (k), after which, the remaining elements in the last row
are considered small enough to be forced to zero. In the
re�nement step, we would like to select the largest pivots
each time we apply a rotation; however, in order not to
increase the complexity, we propose to generate randomly
the N � 1 pivot positions within �SN .

In NA-CSVD (Table 2), the QR step almost zero the
projection of the incoming vector on the tracked signal sub-
space and the noise vector vN (see [3] for details); the cross-
terms are contained in a vector because of the introduction
of a Householder transformation. Accordingly, in the re-
�nement step, the r pivots are directly chosen from the
�rst entry down to the rth entry of the last column of �(k).

Here, the concept of cross-terms cancellation leads to a
type of RO-FST structure and provides an explanation of
its good performance. However, our approach is based on
a di�erent type of decomposition and both algorithms have
di�erent re�nement structures.

The complexity of CSVD and NA-CSVD are respec-
tively O(N2) and O(Nr).

4. EXPERIMENTAL RESULTS

In all our experiments, we estimate the direction of arrival
(DOA) of r incident plane waves on a receiving linear array
of N sensors. The ith entry of the measurement vector
x(k) represents the combined e�ect of all the sources at

the ith sensor, i.e. xi(k) =
Pr

l=1
Al(k)e

j(i�1)!l(k) + ni(k),
i = 1; � � � ; r, where !l(k) and Al(k) are the electrical angle
and the complex amplitude of the lth source and ni(k) is an
additive noise component. ni(k) and Al(k) are modelled as
complex circular Gaussian variables; the variance of ni(k)
is set to 1, and the complex amplitudes Al(k) correspond
to each of the source's signal-to-noise ratio SNRl.

In the �rst experiment, we compare complete tracking
algorithms: CSVD, MS (the "maximum-search" algorithm
described in section 2) and Moonen's algorithm. The sim-
ulation parameters are: r = 2 �xed sources with DOA of
40� and 55�; N = 8 sensors; SNR = 5dB; � = 0:99. All
the algorithms are initialised with the exact SVD at k = 1.

Fig. 1(a) shows the initial convergence averaged over
20 experiments. The MS algorithm is the closest to the
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Figure 1: Complete tracking : signal subspace error and
MUSIC spectrum for CSVD, MS, Moonen and exact SVD
algorithms.
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Figure 2: Partial tracking : signal subspace error for two
closed moving sources : NA-CSVD, NASVD and RO-FST

exact SVD, con�rming that the upper-triangular structure
is not required. Next to MS algorithm is the CSVD. Fig.
1(b) shows the MUSIC spectrums after 300 samples for one
experiment.

The second simulation tests various partial tracking al-
gorithms: NASVD, RO-FST (one re�nement) and NA-CSVD.
We limited our simulations to those three since [7] o�ers nu-
merous comparison tests between RO-FST and other pop-
ular algorithms. The simulation parameters are: r = 2
crossing sources with DOA's given by (20 + 0:01k)� and
(30�0:01k)� and crossing at k = 500; N = 8; � = 0:99 and
SNR = 5dB.

Fig. 2 shows the distance between estimated and true
signal subspace, averaged over 20 experiments. It shows
that all algorithms face a stronger di�culty when sources
meet, since one source is lost. The center of the �gure in-
forms on their respective ability to separate close sources,
while the sides indicate their ability to track moving sources.
Here, NA-CSVD o�ers an improvement compared to RO-
FST and appears to be less sensible to non-stationnarities.

Generally, the algorithms based on cross-terms cancel-
lation (CSVD, NA-CSVD, RO-FST) have a higher perfor-
mance compared to other algorithms with the same com-
plexity.

Table 1: CSVD algorithm

Step Operation

V (k) V (k � 1)

QR step

�
�(k)
� � �

�
 QT (k)

�
��(k � 1)

xH(k)V (k)

�

for l = 1 : N � 1
re�ne- choose (il; jl) randomly in �SN

ment �(k) [G
iljjl
� ]T�(k)G

iljjl
�

V (k) V (k)G
iljjl
�

end

Table 2: NA-CSVD algorithm

Step Operation

VS(k) VS(k � 1)
spherica- vN  f(x(k); VS(k))
lisation V (k) [VS(k);vN ]

QR step

�
�(k)
� � �

�
 QT (k)

�
��(k � 1)

xH(k)V (k)

�

for l = 1 : r

re�ne- �(k) [G
ljL+1

� ]T�(k)G
ljL+1

�

ment V (k) V (k)G
ljL+1

�

end
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