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ABSTRACT

In this paper we introduce a general framework for
edge preserving �lters, derived from the powerful class of
M-estimators. First, we show that under very general as-
sumptions, any location estimator generates an edge pre-
serving �lter if we approximate the estimate by one of
the input samples. Based on this premise, we propose
the family of S-estimators or S-�lters, as a selection-type
class of �lters arising from a computationally tractable
\selecti�cation" of location M-estimators. S-�lters inher-
it the richness of the theory underlying the M-estimators
framework, providing a very 
exible family of robust esti-
mators with edge preservation capabilities. Several proper-
ties of S-�lters are studied. Su�cient and necessary con-
ditions are given for an S-�lter to present edge enhancing
capabilities, and several novel �lters within this framework
are introduced and illustrated.

Data, �gures and source code utilized in this paper are avail-
able at http://www.ee.udel.edu/signals/robust/

Keywords - Selection �lters, M-estimators, S-estimators,
S-�lters, selecti�cation, closi�cation, edge preservation, im-
pulse suppression, edge enhancing, edge sharpening.

I INTRODUCTION

The theory of nonlinear robust �ltering has been motivated
by the limitations of linear �lters whenever the underlying
processes are impulsive. Although linear methods are in
general the optimal tools when signal statistics are Gaus-
sian, it is well known that linear estimators su�er from sig-
ni�cant performance degradation when noise distributions
become heavy-tailed.
Signal smoothing and enhancing is a typical problem in

which alternative nonlinear robust methods must be often
used. This problem has motivated the development of a
wide variety of nonlinear \low-pass" robust �ltering tech-
niques with the capability of dealing with impulsive noise
while still maintaining acceptable performance [11]. How-
ever, due to the lack of a general theory underlying the
problem of robust �ltering, common procedures tend to be
ad hoc, and most of the frameworks proposed are often very
limited or too particular.
There is an important class of smoothing applications

that requires, in addition to robustness, careful manage-
ment and preservation of signal edges. This is the case for
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example in image processing, where the perception of edges
is of fundamental importance to the human visual system.
Again, linear smoothers show inappropriate for these kinds
of applications because of the severe smearing to edges that
they introduce.
A nonlinear �ltering framework that has proven success-

ful managing both impulse resistivity and edge preservation,
is given by the class of median-based �lters [11, 13]. Pos-
sessing the above two properties, while still presenting rela-
tive computational simplicity, has been the key to the great
acceptance and success of median-based �lters in the signal
processing community. However, �lters based on the median
operator are not very 
exible. They may cause edge jitter
[4], streaking [3], and may remove important image details
[1]. As it will be shown later in this paper, median-based
�lters tend to blur edges when smoothing noisy signals, and
are not capable of performing edge enhancing operations.
Also, although it is known that median-based �lters are
the optimal framework when the underlying statistics are
Laplacian (i.e. biexponential), their smoothing ability can
be signi�cantly reduced if the noise distribution deviates
from the Laplacian model.
Although several alternatives and generalizations have

been proposed to circumvent the limitations of median �l-
ters [1, 2, 5, 10], there is the lack of a general theory un-
derlying the problem of robust edge preserving smoothing.
In this paper we introduce a solid framework for selection-
type1 �lters, su�ciently powerful to attack the problem of
robust smoothing in the presence of edges, and with enough

exibility to guarantee its success in many practical appli-
cations.
First, we establish a link that directly relates any location

estimator (including the median), with a �ltering frame-
work satisfying the properties of impulse suppression and
edge preservation. It is shown that this link can be easi-
ly built if we constrain the �lter to be selection-type. This
\selection" characteristic, possessed naturally by the medi-
an, is precisely what has made median-based techniques so
popular in applications where edge and detail preservation
are signi�cantly important. Based on the above premise,
we introduce the class of S-estimators or S-�lters, as the
class of selection-type �lters derived from a computational-
ly tractable \selecti�cation" of location M-estimators.
The theory of M-estimators is a very general and ma-

ture �eld in robust statistics [7, 8]. For a set of sam-
ples x1; x2; � � � ; xN , the M-estimator of location is de-
�ned, in general, as the value � which minimizes the sumPN

i=1
�(xi��). The function � is usually known as the cost

function associated with the estimator, and it plays a fun-
damental role in the understanding and characterization of

1We will refer to a �lter as selection-type if its output is always
equal to one of the input data. The �lter operation can thus
be seen as \selecting" one of the data from the input window
according to some given rule.



M-estimators. The name \cost" is explained from the engi-
neering interpretation that a \penalty" with value �(xi��)
shall be paid for the estimator to be away from sample xi.
Under this point of view, the M-estimator is the point �
with the minimum sum of costs.
Table 1 shows several examples of M-estimators and the

cost functions associated with them. Worth noting, the
sample mean and the sample median can be seen, respec-
tively, as the least squares and the least absolute value s-
tatistics, and thus they are members of the M-estimator
family.

Estimator �(x)
Mean x

2

Median jxj

Huber [8]

�
x
2 if jxj � k

2kjxj+ k
2 if x > k

Myriad [5] log(k2 + x
2)

Table 1. Several M-estimators and their corre-
sponding associated cost functions.

II SELECTION ESTIMATORS AND THE
SELECTIFICATION PROCEDURE

To begin, we introduce the concept of closi�cation of a gen-
eral location estimator (not necessarily in the M-estimator
class), and show some important properties of the resulting
\closi�ed" estimator.

De�nition 1 (Closi�ed location estimator)
Given a set of samples x1; x2; � � � ; xN , and a location es-

timator �̂, we de�ne �̂C, the closi�ed version of �̂, as the

selection estimator that takes the sample closest to �̂

�̂C = argmin
xj

j�̂ � xj j: (1)

The procedure of transforming a location estimator in its
closi�ed version will be referred to as closi�cation. Closi�ed
estimators follow an important \mode-type" property when
the samples are restricted to binary2 values:

Property 1 Let �̂ be a \reasonable" location estimator on

a set of binary samples. Then, the closi�ed estimator �̂C
can easily be calculated as the most repeated value in the
sample.

The above property comes from our empirical under-
standing of the job that a location estimator is supposed
to do. Since we do not want to deal with the hassle of
de�ning a \reasonable" location estimator, we do not o�er
any proof3. Nevertheless, the result is intuitively appeal-
ing. There is not any apparent reason why a fair estimate
locating a set of binary samples, would be closer to the less
repeated value than to the most repeated one.
The following two properties are a direct consequence of

Property 1 for any �lter based on closi�ed estimators:

Property 2 (Edge preservation) Step signals are pre-
served after the operation of the �lter.

2We use the term binary when the samples can only take
either one of two possible values.

3To introduce a little more rigor, Property 1 by itself could be
considered as a formal characterization of the class of reasonable
estimators of location.

Property 3 (Impulse suppression) Constant pulses of
length less than half the window size are suppressed by the
�lter.

It is interesting to note that, whether for median or for
closi�ed �lters, the reason for the appearance of the above
two properties is exclusively explained by the \selection"
characteristic of the estimators. Closi�cation thus o�ers
a simple and general procedure for providing edge preser-
vation and impulse suppression capabilities to smoothing
�lters. These capabilities have been precisely the key for
the great acceptance of median-type �ltering in the signal
processing community.
Nevertheless, in general, closi�cation is a computationally

expensive procedure. The direct computation of a closi�ed
estimator requires the prior calculation of the original es-
timator in addition to the minimization indicated in (1).
In the following, searching for computational savings while
still maintaining the properties of selection estimators, we
introduce the concept of selecti�cation in the context of cost
function based M-estimation.
For the sake of mathematical tractability, and also to

comply with our intuitive understanding of \reasonable"
location estimation, we want to constrain our attention to
cost functions with the following properties: (1) symmetry
around zero, (2) increasing monotonicity on (0;1), and (3)
continuity.

De�nition 2 (Selecti�ed estimator) Given a set of
samples x1; x2; � � � ; xN , and a cost function � satisfying the
properties in the previous paragraph, we de�ne the selecti-
�ed M-estimator associated with � as

�̂S = argmin
xj

NX
i=1

�(xi � xj): (2)

We will refer to �̂S as the selection estimator associated
with �, and, as member of a general class, we will call it an
S-estimator4 .
Note that the only di�erence between the de�nitions of S-

and M-estimators, is the domain set for the minimization.
While the M-estimator comes from an optimization over
every possible real number, the S-estimator constrains the
optimization over the �nite set constituted by the samples.
This is, in general, a valuable numerical advantage for small
sample size applications. While the evaluation of closi�ed
M-estimators may require in most of the cases expensive
numerical procedures, the complexity of any S-estimator is
always on the order of O(N2) or less.
It can be easily shown that S-estimators, like closi�ed

estimators, follow Properties 1, 2 and 3. Important to
note, S-estimators are, in general, di�erent from closi�ed
M-estimators. An example in which closi�cation and selec-
ti�cation lead to di�erent results is illustrated in Fig. 1.
Here, we have used the myriad [5] cost function, �(x) =

log(k2 + x
2), for the set of samples x1; x2; . . . ; x7. As it

is indicated, the M-estimate is the point �̂ minimizing the

sum of costs. The sample closest to �̂, (x3 in this case),
corresponds to the closi�ed estimator, whereas the sample
with the lowest sum of costs (x4 in this case), corresponds
to the S-estimator.
There exist cost functions for which selecti�cation and

closi�cation are equivalent procedures. The quadratic cost

4The letter \S" is aimed to indicate the \selection" charac-
teristic of the estimator. The term \S-estimator" has previously
been used in statistics to denote a class of estimators based on
the minimization of a scale statistic [12]. Since the scope of this
work di�ers signi�cantly from that of [12] using the same name
should not give rise to confusion.



Σlog(k2+(xi−β)2)
i

Closified
M−estimate

Selectified

x1 x2 x3 x4 x5 x6 x7

Figure 1. Illustration of closi�cation and selecti�-
cation procedures. While the closi�ed estimate is
the sample closest to the M-estimate, the selecti-
�ed estimate is the sample with the lowest sum of
costs.

function �(x) = x
2, associated with the mean, gives a par-

ticularly interesting example of this case. The S-�lter de-
rived from this cost function, provides an edge-preserving s-
moothing framework with very low computational complex-
ity (on the order of O(N)). We call this �lter the \Closest-
to-mean" or CTM �lter. A study of its properties and ca-
pabilities in near Gaussian environments is introduced in
reference [9], also presented at this conference.

III PROPERTIES OF S-ESTIMATORS

We begin this section with a simple but surprising result:

Property 4 All S-�lters with window length 3 are equiva-
lent, independently of the cost function �.

Property 4 is a direct consequence of the following bounds,
which we state without proof due to lack of space:

Property 5 For any cost function �, the associated S-

estimator �̂S, is bounded by

x(2) � �̂S � x(N�1); (3)

where x(i) denotes the i-th order statistic of the sample.

Property 5 is of signi�cant importance for smoothing appli-
cations, where in general, overshoots and/or undershoots in
the �ltered signal are not desired.
Although large window sizes are not common in most �l-

tering applications, it is interesting to look at the asymptot-
ic properties of S-estimators. It can be proven that, under
very general conditions, S-estimators inherit the asymptotic
behavior of their associated M-estimators. Thus, important
results from M-estimation theory, such as consistency and
asymptotic Gaussianity, can easily be extended to the fam-
ily of S-estimators.

IV NATURAL SELECTION ESTIMATORS

M-estimators such as the median, possess the natural prop-
erty of being selection-type without having to resort to the
selecti�cation procedure. We de�ne any M-estimator with
this property as a natural S-estimator. In the following, we
introduce a powerful class of natural S- estimators.

De�nition 3 Let �̂ be an M-estimator associated with the

cost function �. We will call �̂ a totally descending estima-
tor if the derivative �0 is monotonic decreasing on (0;1).

It can be shown that every totally descending estima-
tor is natural selection. An important family of this type
of estimators is formed by the \non-Hilbert" class of Lp
estimators, associated with �(x) = jxjp for 0 < p < 1.
These estimators, which include the median in the limit
case (p = 1), o�er a computationally tractable alternative
to robust �ltering in impulsive environments, and possess
very interesting properties that are worth further study. We
conjecture that they form the only class of natural selection
estimators which are scale invariant. In the limit, as p! 0,
the Lp class embraces the mode-myriad, a mode-type \zero-
order" estimator with very high resistance to outliers [5, 6].
Another important class of S-estimators is characterized

by the cost function

�(x) = log(kp + jxjp); (4)

where p is a positive constant, and k � 0 is a tuning pa-
rameter, intimately linked with the data variability.
For p = 2, expression (4) de�nes the class of selection

myriad estimators, which has proven successful in the man-
agement of joint signal smoothing and edge enhancing [2, 5].
It can be shown that large values of k make the selection
myriad to behave like the CTM estimator. Small values
of k, on the contrary, resemble the behavior of the mode-
myriad, indicated above.
For any 0 < p � 1, (4) de�nes a totally descending (and

hence natural selection) estimator with a particular sensi-
tivity to the values of the tuning constant k. When k is
very large, it can be proven that the estimator behaves like
the median, whereas for small values of k, the estimator
resembles, again, the behavior of the mode-myriad.
A signi�cant advantage of the family of estimators in-

troduced in (4) is that it provides a very 
exible �ltering
class with relatively low computational cost. It is easy to
show that the estimator de�ned by (2) and (4) can be more
e�ciently calculated by

�̂S = argmin
xj

NY
i=1

(kp + jxi � xj j
p); (5)

which avoids the evaluation of the logarithms.

V EDGE ENHANCING FILTERS

It is well known that monotonic trends, which are the typi-
cal structure observed in blurred edges, stay invariant after
the operation of the median �lter. Thus, median type �lter-
s are signi�cantly limited in image enhancing applications
where sharpening of blurred edges is desired.
The S-�lter family provides a rich framework in which

edge enhancing can be easily managed. Carefully designing
the cost function �, it is possible to obtain the desired levels
of edge sharpening to be produced by the associated S-�lter.
The following proposition, which we include without

proof, characterizes the class of all S-�lters that can per-
form signal edge enhancing.

Proposition 1 An S-�lter is provided with edge sharpening
capabilities if and only if its associated cost function � has
a region of nonconvexity.

According to this, median and CTM �lters cannot pro-
vide edge enhancing, whereas the class of totally descending
�lters can. Figure 2 illustrates the edge enhancing behav-
ior of the �lter associated with (4) (p = 1) as k is varied.
For large values of k, this �lter is equivalent to the median,
which is unable to modify the monotonic edge. Reducing



the value of k, progressively increases the edge enhancing
capabilities of the �lter. The above method can be success-
fully exploited in practice to induce edge enhancing features
in median based �lters. The parameter k would play the
role of a tuning constant indicating the desired level of en-
hancing. This procedure is illustrated in the problem of
smoothing the noisy blurred image of Fig. 3(left). The
output of a 3 � 3 median �lter is shown in Fig. 3(right).
Obviously, the image blur cannot be overcome by the ap-
plication of the median �lter. Figure 4 shows how the edge
enhancing capability of the �lter improves as k is reduced.

Original Signal
K=0.01
K=0.1
K=0.6
K=1

Figure 2. Providing edge enhancing capabilities to
the median smoother via the family of estimators
in (4). Smaller values of k induce increased edge
sharpening capability. The median �lter, corre-
sponding to very large values of k, cannot modify
the monotonic edge.

VI CONCLUSIONS

The class of S-�lters, introduced in this paper, constitutes
a powerful and 
exible framework along the lines of the M-
estimation philosophy. By constraining the minimization
space of an M-estimator to be equal to the sample set, we
transform the estimator in a selection-type (or S-)estimator
with the features of edge preservation and impulse suppres-
sion. As in the case of M-estimation, careful cost function
design is the key to control critical features such as �lter
robustness or edge enhancing capabilities. For example, we
found that the performance of S- �lters as edge enhancers
can be directly characterized by the degree of nonconvexity
in the associated cost functions. We also studied several
properties of S-estimators, and introduced novel examples
of estimators in this class. From these, it is worth high-
lighting the potential impact of the closest-to-mean (CTM)
estimator, the \nonHilbert" Lp estimator, and the logarith-
mic cost function estimator introduced in expression (4).
S-�lters can play a signi�cant role in applications such as
image processing, where edge preservation and impulse sup-
pression are features of paramount importance.
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