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ABSTRACT

The problem of distinguishing reliably between signaling
formats in the presence of noise, interference, unknown dis-
persive channel conditions, as well as timing and frequency
mismatches is addressed. Methods based on a combina-
tion of blind equalization and universal classi�cation are
presented and their performance is assessed through simu-
lations.

1. INTRODUCTION

Signal modulation classi�cation in unknown dispersive en-
vironments continues to be an open problem. Signi�cant
progress has been made in the areas of modulation classi-
�cation in non-dispersive environments and blind equaliza-
tion with known modulation formats in Gaussian channels.
Unfortunately, solutions for the problem in which both the
signaling format and the characteristics of the communica-
tion channel are unknown remain elusive.
To address this, our research aims to develop and investi-

gate novel approaches for modulation classi�ers for distin-
guishing reliably between signaling formats in the presence
of noise, interference, unknown dispersive channel condi-
tions, as well as timing and frequency mismatches. We
present classi�ers that incorporate methods for blind chan-
nel identi�cation into universal classi�ers previously shown
to be e�ective in non-dispersive environments [3].

2. THE UNIVERSAL CLASSIFIER

The signal classi�cation problem can be formulated as an
M-ary hypothesis testing problem based upon test data Xn

and ambient channel training data�N with a rejection re-
gion. The decision regions are de�ned in terms of M dis-
criminant functions corresponding to the M hypotheses as
follows:
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Here Si(�) represents the random signal corresponding to
hypothesis Hi with � as the unknown parameter for the
hypothesis i = 1; 2; � � � ;M . H(P (�)) denotes the entropy
of the type of a signal vector. For the true hypothesis the
discriminant function will be close to negative � since all
of the entropy terms in the discriminant function should be
roughly equal. The parameter � controls both the size of the
rejection region and the rate at which the error probability
tends to zero.
This so-called Image-map classi�er have been shown

in previous work to distinguish reliably between di�erent
QAM formats even in severe Gaussian interference [3]. Be-
cause of this past work, signi�cant progress has been made
in the area of modulation classi�cation in non-dispersive
environments, but unfortunately the classi�er is highly sen-
sitive to the unknown dispersive channel.

3. ALGORITHMIC APPROACHES

Towards integrating channel estimates into the universal
modulation classi�er we have two possible approaches. The
�rst is to blindly identify the channel and \train" the classi-
�er to recognize the �ltered signal by translating the noise
training sequence to all possible �ltered signal locations.
While this approach avoids the possibly problematic inverse
�ltering of the observations, it su�ers from the fact that the
number of possible signal locations is frequently large (AL,
where A equals the size of the constellation and L is the
delay spread of the channel in sampling periods) and cor-
respondingly long training sequences may be required. Al-
ternatively, one can attempt to blindly identify the inverse
of the channel to �lter the test data. Since the output of
such an inverse �lter ideally contains the transmitted sym-
bols (possibly multiplied by a complex exponential reect-
ing phase and frequency mismatch) embedded in �ltered
noise, the universal classi�er would necessarily have to be
trained with the inverse �ltered training sequence. In this
approach the classi�er would only be \trained" to recog-
nize the candidate constellation of size A. In this paper, we
focus on the second approach.

4. CHANNEL MODEL AND BLIND
EQUALIZATION

The block diagram in Figure 1 summarizes the underlying
communication system up to the receiver front-end [1].
There are many adaptive algorithms for blind equaliza-

tion. Most of these algorithms are based on the use of
stochastic gradient descent algorithms for self-adaptation,
others are based on the use of higher-order statistics of the
received signal to estimate the channel characteristics and
to design the equalizer. Godard's blind equalization algo-
rithm falls into the �rst category.
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Figure 1. Model of a communication system and
receiver front-end.

Let us consider a QAM data transmission system, where
the data symbols are taken from a two-dimensional con-
stellation. Throughout, we assume that the input sequence
fs

qi
n g consists of zero-mean i.i.d. random variables with

discrete probability distribution qi speci�ed by hypothesis
Hi. Denoting the baseband pulse shaping signal by g(t) and
symbol interval by T ,the transmitted signal under hypoth-
esis Hi is of the form

x(t) = Ref
X
n

s
qi
n g(t� nT )ej2�f0tg

Assuming a dispersive transmission medium with additive
noise w(t), the receiver input signal can be expressed as

y(t) = Ref
X
n

s
qi
n a(t� nT )ej(2�f0t+�(t))g+ w(t)

Where a(t) is a generally complex valued signal, incorpo-
rating both the pulse-shaping g(t) and the channel impulse
response c(t). We are currently focusing on the case where
c(t) is not time varying. �(t) is a time-varying phase shift
due to frequency o�set and phase jitter.
We assume that demodulation by a local carrier with fre-

quency f0 is carried out before equalization. Therefore, the
equalizer has to process a complex signal of the general form

r(t) =
X
n

s
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here z(t) denotes the baseband equivalent of the noise pro-
cess w(t). The continuous time signal r(t) is then �ltered
and sampled at the symbol rate1 to obtain the discrete time
signal vn. Hence, the signal vn is given by
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The following assumptions are made regarding the channel
impulse response and the equalizer.

� The unknown channel fflg is a possibly non-minimum
phase, linear, time-invariant �lter in which the transfer
function has no zeros on the unit circle.

� The equalizer fclg is assumed to be a FIR �lter of su�-
cient length, so that truncation e�ects are insigni�cant.

1
Clearly, an inherent assumption has been made regarding

the availability of symbol timing. In the next section, we will

drop this assumption and consider sampling at rates higher than

the symbol rates.

With a linear equalizer, the equalizer output is given by zn
=
PLe

l=1
rn�lcl, where the equalizer coe�cients fclg, l =

1; 2; : : : ; Le, have to be adapted blindly. Godard's constant
modulus criterion, D(p) = E(jznj

p
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2, may be used for
this purpose. Throughout this report, we focus on the case
p = 2. Then, the stochastic gradient descent algorithm
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�
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may be used to estimate the channel coe�cients. Here �c

is step size parameter, ck denotes the length Le vector of
coe�cients and rk denotes the vector of the Le most recent
observations. Notice that the blind criterion does not allow
phase estimates. However, knowledge of the phase is not
required for the Imagemap classi�er.

5. FRACTIONALLY SPACED CHANNEL
MODEL

In this section, we consider the use of general fraction-
ally spaced, blind equalization (FSBE) in conjunction with
image-map classi�ers for modulation classi�cation.
In contrast to the baud rate equalizer, a fractionally

spaced equalizer is based on sampling the incoming signal
more than once per symbol period. In general, a digitally
implemented fractionally spaced equalizer has tap spacing
of MT

N
where M and N are integers and N > M . Through-

out, we will assume M = 1 to simplify our exposition.
The noise samples at the output of the fractionally spaced

sampler,
R
1

�1
z(t)h(t� k T

N
)dt, are correlated if h(t) spans

more than one sampling period of length T
N
. In that case,

a whitening �lter (WF) is used to remove that correlation.
We will assume here that the support of h(t) is con�ned to
an interval of length T

N
and, hence, no whitening �lter is

required.
Let us de�ne the overall system impulse response as

f(t) = g(t)
 c(t)
 h(t): (3)

Then, the k-th sample out of the receiver front-end is given
by
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where s(t) =
P

n
sn�(t � nT ). Equation (4) shows that

the system in Figure 1 is equivalent to a discrete-time,
multi-rate system [2]; the input rate is the symbol rate
1

T
while the output rate equals N

T
. Two interpretations

for (4) are possible. We can interpolate (up-sample) the
low-rate input signal fsng and then model the channel as
a FIR �lter with approximately NL taps, where L is the
delay spread of f(t) in symbol periods. Alternatively and
consistent with the notion of polyphase �lters [2], we can
interpret (4) as describing a bank of N symbol-rate parallel
�lters with common input fsng. The coe�cients of the l-th
�lter, l = 0; 1; : : : ; N�1 are ffiN+lg, with i = 0; 1; : : : ; L�1.
This interpretation is illustrated in the left half of Figure 2.
Based on the two interpretations above, two avenues to

proceed are possible. First, one could attempt to design an
equalizer that takes the sequence fvkg and seeks to extract
the data symbols. Such an equalizer would necessarily be
a multi-rate �lter with input rate N

T
and output rate 1

T
.
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Figure 2. Polyphase �lter interpretation of discrete-
time equivalent channel with equalization.

It appears that symbol timing information is required for
proper design/adaptation of this equalizer.
However, since we are not directly interested in the trans-

mitted symbols we can instead use a symbol-rate blind
equalizer for each of the polyphase �lters as shown in Fig-
ure 2. The individual equalizer outputs do not need to
be decimated (down-sampled) and can instead be concate-
nated and fed to the image-map classi�er. In essence, we
are using N channels with lower SNR but obtain N times
as many observations as with a symbol rate sampler. Also,
the precise symbol timing is not required as each branch in
Figure 2 operates at the symbol rate.

6. SIMULATIONS

In this section, we evaluate empirically the performance of
the Imagemap classi�er with Godard's blind equalization
algorithm in a practical QAM modulation classi�cation sce-
nario with an unknown dispersive environment with baud-
rate and fractionally spaced sampling.

6.1. Baud-Rate Sampling

We consider the binary modulation classi�cation scenario of
di�erentiating between 4-QAM and 8-QAM. The channel is
an FIR �lter with tap weights given by

fflg = f0:7474 � 0:5440 0:2989 � 0:0747 0:2247g:

The noise is 10% Laplacian embedded in Gaussian noise.
The average symbol energy for the two QAM schemes is
taken to be unity.
The Kullback-Leibler distances between test and training

data for each of the hypotheses is shown in Figure 3. Note
that after about 80 test symbols, the distances separate to
provide correct detection. In Figure 3, we have plotted the
empirical detection probability as a function of the length of
the test sequence. Even with relatively short test sequences
highly reliable decisions are made. Figure 5 shows the em-
pirical detection probabilities versus the signal-to-noise ra-
tio (SNR). The classi�er achieves more than 93% detection
probability when the SNR is greater than or equal to 0 dB
in this non-Gaussian environment and for the channel under
consideration.

6.2. Fractionally Spaced Sampling

With a randomly chosen channel coe�cients for fflg, we
simulate the above classi�cation scenario with 1

2
T -spaced

equalizer. We assume that the delay spread of f(t) spans
3 symbol period and hence the fractionally spaced channel
has 6 taps. We used two channels in our simulations, the
second of which exhibited zeroes near the unit-circle.The
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Figure 3. H1: 4-QAM, H2: 8-QAM. Kullback-
Leibler Distance versus Length of Test, n Symbols.
SNR = 3 dB, 10% Laplacian, C=2.

noise is 10% Laplacian embedded in Gaussian noise. The
average symbol energy for the two QAM schemes is taken
to be unity.
In Figure 6, we have plotted the empirical detection prob-

ability versus the signal-to-noise ratio (SNR). The �gure
shows the empirical detection probability if each of the
branch outputs is considered alone and the detection prob-
ability if the two branch outputs are concatenated. Even
with the relatively short equalizer, reliable decisions are
made, and the �gure shows that signi�cant better perfor-
mance is achieved when both branch outputs are consid-
ered.
The CMA blind equalizer with 12 taps is not quite capa-

ble of inverting the channel frequency response which has
deep notches, particularly in the �rst branch. Figure 7
shows the empirical detection probabilities versus the SNR.
The performance of the classi�er in this channel is substan-
tially worse than with Channel I. Note in particular that the
�rst branch has a lower detection probability than the sec-
ond which strongly supports the hypothesis that inadequate
equalization is to fault for the loss in performance. Further-
more, the combined detection probability is dominated by
the better individual detection probability (branch 2). Note
however that short sequences of only 100 observations were
used in these experiments.
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Figure 4. H1: 4-QAM, H2: 8-QAM. Detection
Probability for Random Channel versus Length of
Test. SNR = 3 dB, 10% Laplacian, Blind Equalizer
With 12 Taps, C=4.
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Figure 5. H1: 4-QAM, H2: 8-QAM. Detection
Probability for Random Channel versus SNR. 10%
Laplacian, Blind Equalizer With 12 Taps, Length of
Test 250 Symbols, C=4.
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Figure 6. H1: 4-QAM, H2: 8-QAM. Detec-
tion probability for channel (I), 10% Laplacian,
T
2
-fractionally spaced blind equalizer with 4 taps,

length of test 100 symbols, C=4.
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Figure 7. H1: 4-QAM, H2: 8-QAM. Detection
probability for channel (II), 10% Laplacian, T

2
-

fractionally spaced blind equalizer with 12 taps,
length of test 100 symbols, C=10.


