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ABSTRACT

Noisy Principal Component Analysis (NPCA) was intro-
duced recently as an extension of PCA in the assumption
that the linear features are unreliable. The level of noise
in the representation variables is found to have e�ects in
the rank of the optimal solution resembling the water-�lling
analogy in information theory. The NPCA problem needs
to be coupled with certain constraints so that it permits a �-
nite solution. We present the solution of the NPCA problem
under di�erent constraints which can be useful in applica-
tions involving bandwidth limitations. One of these applica-
tions is the design of optimal subband coders incorporating
quantization noise. In addition to the NPCA-optimality an-
other advantage of the new design approach is that it works
entirely in the time domain and thus the costly and di�cult
transformations to and from the Z-domain can be avoided.

1. NOISY PRINCIPAL COMPONENT
ANALYSIS (NPCA)

Noisy Principal Component Analysis (NPCA) was recently
introduced in order to deal with the problem of the opti-
mal linear vector coding and decoding in the presence of
noise in the representation variables [3, 7, 1, 4]. Noisy PCA
does not require any prior assumptions on the distribution
of the signal and can be applied to non-Gaussian signals as
well as Gaussian ones. The noise included in the represen-
tation or code vector y, can be a model of the quantization
error in coding applications, of the transmission error in
communication applications, of random neural activity in
neural network models, etc. A generic diagram describing
the NPCA problem is shown in Fig. 1.
Like the standard Principal Component Analysis (PCA)

method the dimension m of the code vector y, is assumed
less than the dimension n, of the input vector x. Unlike
PCA however, we assume now that the code vector con-
tains noise uncorrelated with the input, so ExeT = 0. Ad-
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Figure 1. Codec using Principal Component Anal-
ysis with noisy representation.

ditionally we assume that the input x, is either a stationary
signal or a random vector and that the observation vector
x̂ is degraded by noise � which is uncorrelated with both x
and e. Analytically, the coding and decoding equations are

y = Wx+ e (1)

x̂ = Wy+ � (2)

whereW,W, are the linear coding and decoding operators
represented by two matrices.
The usual mean-squared error is minimized for NPCA as

with standard PCA:

J = Ekx̂� xk2 (3)

It is easy to see that the observation noise � is inconsequen-
tial to the minimization of (3) due to its lack of correlation
with either x or e. Indeed, expanding (3) we obtain

J = Ekx�WWx�Wek2

= trfWWRxW
T
W

T g � 2 trfWWRxg
+trfWReW

T g+ trR� + trRx (4)

where Rx, Re, and R� are the correlation matrices of
the signal, the coding noise and the observation noise, re-
spectively. The observation noise enters the equation only
through the constant term R� which can be dropped with-
out a�ecting the optimal solution.
The coding noise e, on the other hand, can not be ignored

and it does a�ect the optimal solution. Clearly, if the noise
power is zero the NPCA problem degenerates into the stan-
dard PCA problem. If however, the noise is non-zero then
NPCA has many interesting properties. Firstly, there is no
�nite solution unless we impose some constraint on the ma-

tricesW andW. Di�erent constraints have been studied in
the literature but still many questions are open. Secondly,
the problem is closely related with the so-called water-�lling
analogy appearing in information theory [5]. Thirdly, the
rank of the optimal solution under most constraints reduces
as the noise power increases.
Next we shall describe the optimal NPCA solutions for

various important constraints, although the list is not ex-
haustive. Some more constraints are discussed for example,
in [4].

2. PROBLEM CONSTRAINTS

In the absence of constraints the NPCA problem is un-
bounded. The in�mum is achieved asymptotically forW!
1 and W = W+ ! 0. With this solution the error term



We is diminished relative to the signal term WWx in the
cost function J . In order to obtain a meaningful solution
we need to impose an upper limit on the size of the cod-
ing matrix W or a lower limit on the size of the decoding

matrix W.

2.1. Direct coding and decoding matrix con-
straints

Two of the earlier studied constraints are the straightfor-
ward bounds on the Frobenius norms of the coding and
decoding matrices [3]:

kWk2F � s
2 (5)

kWk2F � s2 (6)

For the NPCA constraints shown above the problem has
been solved. Before proceeding to the solution let us intro-
duce some notation: let (�xi ;u

x
i ), and (�ei ;u

e
i ) be the eigen-

vector/eigenvalue pairs of the matrices Rx and Re respec-
tively, such that the eigenvalues are arranged in decreasing
order. The following are the basic results [4]:
(a) For the constraint (5) on the coding matrix the opti-

mal solution is

W =

rX
i=1


iu
e
m�i+1u

x
i
T

(7)

where the 
i's are scalar values dependent upon the signal
and noise eigenvalues. The optimal rank r is less or equal
to m, and it diminishes as the noise power increases. In the
limit �em !1 we have r = 1.
(b) For the constraint (6) on the decoding matrix the

optimal solution is not attained for any �nite matrix W
but we can come arbitrarily close to the optimum for an
almost rank-1 matrix

W = su
x
1u

eT

m +

mX
i=2

�u
x
i u

eT

m�i+1 (8)

where epsilon is an arbitrarily small positive constant.
What is common in both cases is the low-rank property of

the optimal solution. Especially in the �rst case the optimal
rank reduces as the noise power increases. This has been
likened to the water-�lling analogy found in the information
theoretical context when a signal has to pass through a
number of parallel Gaussian channels with di�erent noise
levels. See [5] for more details. We must note that this
pattern of rank-reduction in relation with the increase of
the noise power appears in the solution of various other
NPCA constraints as well.

2.2. Representation variance constraint

In most applications channel bandwidth is at a premium.
In these cases it is reasonable to put an upper bound on
the NPCA code vector variance thus indirectly limiting the
size of coding matrix W as well. Consider the constraint

Ekyk2 = s
2

(9)

for some �xed value s. Using the method of Lagrange mul-
tipliers for optimizing (3) under the constraint (9) we de�ne
the auxiliary cost J 0 = J + �(Ekyk2 � s2). According to
Theorem 5.5 in [4], for �xed � the optimal solution is

W =

mX
i=1

�iu
e
m�i+1u

xT

i W =

mX
i=1

�iu
x
i u

eT

m�i+1(10)

�
2

i =
n
1=
p

i�� 1=
i if � < 
i,

0 otherwise

�
2
i =
np


i�� � if � < 
i,
0 otherwise

where 
i = �xi =�
e
m�i+1 are signal to noise ratios with the

signal eigenvalues paired in reverse order with the noise
eigenvalues (strongest signal component with weekest noise
component).
For the special case where the noise components are un-

correlated and have the same variance �e, the eigenvectors
uei can be any set of orthonormal vectors. For this case the
variance of the noisy representation is

Ekyk2 =
p
�e=

p
�

rX
i=1

p
�xi + (m� r)�e (11)

where r � m is the rank of the optimal solution. The
variance constraint (9) in this case gives us the optimal
value of �

� =
�e[
Pr

i=1

p
�xi ]

2

[s2 � (m� r)�e]2
(12)

After some mathematical manipulations we �nd that the
rank r is a function of the representation variance s and is
given by the relations

s2 = l(1) = m�e ) r = 0
l(1) < s2 � l(2) ) r = 1
l(2) < s2 � l(3) ) r = 2

...
l(m) < s2 ) r = m

(13)

where l(r) = �e
Pr

i=1

p
�xi =�

x
r + (m� r)�e.

3. FILTER BANK DESIGN

Noisy PCA can be applied in designing optimal subband
coding systems incorporating quantizers. These coders
comprise analysis / synthesis �lters which split the signal
into frequency bands and code each band separately using a
quantizer optimized for the band's statistics. Subband cod-
ing techniques have become popular recently due to their
superior performance in many applications such as image
coding. The design of subband coding systems is typically
done in the frequency domain requiring the computation
of the input signal power spectrum �x(z). Until recently
most subband coders were designed ignoring the error in-
troduced by the quantizers used in each subband. A total
system design including the quantization error was studied
in [11, 9, 6]. Next, we shall show how to formulate the de-
sign problem of an optimal subband coder as a Noisy PCA
problem. The computational advantages of this approach
stem from the fact the Noisy PCA is a pure time-domain
technique and the costly transformations to and from the
frequency domain can be avoided. Furthermore, there is
an adaptive approach for estimating the Noisy PCA solu-
tion in environments where the exact signal statistics are
unknown.
Consider the generic M -bank �lter shown in Fig. 2. The

analysis stage (Fig. 2a) has a typical �ltering-followed-by-
subsampling structure. Here we assume that each �lter Hi

is FIR with order L = M . Let the input samples x(kM),



x(kM � 1), ..., x(kM �M + 1), form a vector x(k). Then
the variables vi result from a linear operation

v(k) = [v0(k) v1(k) � � � vM�1(k)]
T
= Hx(k) (14)

where the elements of matrix H are the taps hi;n, n =
0; 1; � � � ; n, of the �lters Hi: Hij = Hi�1;j�1.
For the quantization of the subbands v0, ..., vM�1, we

assume the use of optimal Lloyd-Max quantizers designed
according to the statistics of each subband. The Lloyd-Max
quantizers are modeled using a gain parameter �, and an
additive noise term e, as follows [8]

y = �v+ e (15)

The gain parameter depends on the input signal and its
value is determined by the formula

� = 1� �
2
q=�

2
v (16)

where �2q is the quantization noise variance. Using the value
(16) for � the additive noise component e is uncorrelated
with the quantizer input v. It can be shown that the vari-
ances of the input, of the output, and of the quantization
error are related by the formula �2y = �2v � �2q , so from (15)

and (16) we have �2e = �(1 � �)�2v. If we de�ne ~v = �v,
then �2~v = �2�2v, so

�
2
e = (

1

�
� 1)�2~v (17)

From rate distortion theory [2] it can be shown that the
parameter � is related with the number of bits R used for
coding v by the formula � = 1 � �(R)2�2R where � is an
increasing function of R with minimum value �(0) = 1 and
a maximum asymptotic value �1 > 1.
Using (15) the analysis plus quantization stage can be

represented by the equations

~v(k) = [~v0(k) ~v1(k) � � � ~vM�1(k)]
T = AHx(k) (18)

where A = diag[�0�1 � � � �M�1].
In the synthesis stage (Fig. 2b) the upsampling is followed

by the synthesis �lter bank. Assuming that the �lters Gi

are all FIR of order L = M , it is easy to verify that the
following equation holds

x̂(kM+n) =

M�1X
i=0

gi;nyi(k); n = 0; 1; � � � ;M�1 (19)

or

x̂(k) = [x̂(kM +M � 1) � � � x̂(kM + 1) x̂(kM)]T =Gy(k)
(20)

where gi;n, n = 0; 1; � � � ;M � 1, are the taps of �lter Gi,

y(k) = [y0(k) y1(k) � � � yM�1(k)]
T , and [G]ij = gM�i;j�1.

Using (18) and (20) and introducing the noise vector

e = [e0(k) e1(k) � � � eM�1(k)]
T we obtain the equations de-

scribing the overall subband coder system

y(k) = AHx(k) + e(k) (21)

x̂(k) = Gy(k) (22)

Assuming that x̂(k) be a (delayed) estimate of x(k�M+1)
then we want to minimize J = Ekx� x̂k2.
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Figure 2. Typical Filter Bank (a) Analysis stage,
and (b) Synthesis stage.

Lloyd-Max quantizers are optimized for the statistics of
each variable vi. Consequently, we assume that the noises
ei are uncorrelated with the variables vi, with the signal
x, and also with each other. Thus the noise covariance
matrix is diagonal Re = diag[�2e1 �

2
e2 � � � �2eM�1 ] and the

noise eigenvalues are equal to the individual noise variances.
The bandwidth of the channel through which we trans-

mit the quantized values yi in addition to the compression
and coding methods used for the transmission set an upper
limit s2 on the variance of the transmitted signal. Using
a maximum variance constraint such as Ekyk2 = s2, we
derive the optimal analysis and synthesis �lters using the
Noisy PCA approach as follows:

1. Select �2q0 = � � � = �2qM�1 = �2q , and select �.

2. Compute

�
e
m�i+1 =

1

4

� r
�

�xi
+

r
�

�xi
�4q + 4�2q

�2

3. Determine optimal rank from the conditions � < = >
�xi =�

e
m�i+1

4. Compute

s
2 =

1p
�

rX
i=1

p
�em�i+1�

x
i +

mX
i=r+1

�
e
m�i+1

If s2 is satisfactory, goto 4. If s2 is too large increase
� goto 2; if s2 is too small decrease � goto 2.

5. Compute NPCA solution W, W, and let

�i = 1�
p
��em�i+1=�

x
i

6. Obtain optimal �lters H = A�1W, G =W.

The proposed method is detailed in the following example
where we use Noisy PCA to design an optimal subband
coder for an image.



4. APPLICATION EXAMPLE: IMAGE
CODING

We use a large number of images in order to statistically
estimate the image covariance function. Under the usual
Markovian assumption for the image probability density,
the cross-covariance for two pixels with displacement �x,
�y, is modeled as [10]

r(�x;�y) = ��
j�xj
x �

j�yj
y

The parameters were estimated as � = 2693, �x = 0:923,
and �y = 0:977.
Next we form the signal correlation matrix Rx of the

input vectors which are 8 � 8 image blocks. The eigen-
value decomposition of Rx yields the eigenvalues �xi and
the eigenvectors uxi . The noise covariance matrix is as-
sumed diagonal. We follow the procedure described in the
previous Section in order to design the NPCA-optimal 64-
bank �lter. The rate-distortion plots for the image \Lena"
are shown in Figure 3a. � takes a range of values from 10
to 500 while �2q is �xed at 10�4. The results are compared
with the ones obtained in [9] for di�erent �lters and for the
bit rates 0.7bpp and 1.5bpp. Figure 3b shows the optimal
solution rank. Observe that even for 1.5bpp the number of
components used are 45 out 64. For rate 0.5bpp approxi-
mately 15 components are used out of 64.

5. CONCLUSIONS

The novel Noisy PCA method deals with unreliability in the
linear feature extraction process. It shares some common
properties with standard PCA, such as the involvement of
the eigenvalue decomposition of the signal correlation ma-
trix. It also has some distinct di�erences from PCA notably,
the low-rankness of the optimal solution and the absence of
a �nite solution without imposing any constraints. Prelimi-
nary theoretical results have been derived for di�erent con-
straints, some of which can have application in signal/image
processing problems.
The design of �lter bank coding systems incorporating

the noise from the quantization operations is one of the ap-
plication areas where a speci�c NPCA constraint can be
used. The results on standard images show promise for a
more general application of NPCA concepts in image cod-
ing.
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