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Abstract

This paper addresses the use of multichannel receivers
for blind equalization in TDMA under frequency
selective channels and OFDM systems in frequency flat
fading channels. A new criteria is proposed for blind
equalization of finite length mobile channels.

1. Introduction

Mobile communications operate in a very hostile
environment due to multipath propagation and vehicle
displacement. Depending on the transmission rate and
vehicle speed, either frequency-selectivity or Doppler
spectrum spreading becomes the major concern.
However, in both cases, the receiver must be able to
track and compensate channel distortion.

In this paper, we propose a new spatio-temporal linear
equalization technique which can be applied to block
transmission schemes (e.g..TDMA) operating frequency
selective channels and also to OFDM modulation subject
to multiplicative distortion (frequency flat fading or F3).

The suggested approach is blind and needs of the use of
diversity receivers which will allow for the application of
multichannel formulation. In the case of frequency
selective channels, this diversity can be achieved either
by means of oversampling the received signal or using
spatial diversity, whereas it will be shown that in the
case of OFDM modulation in multiplicative channels
spatial diversity is necessary.

The proposed method only exploits the fact that the
transmitted signal is the same in all the channels, but
makes no assumptions on its value. The algorithm can
be classified as a blind deterministic criteria and so, its
performance and its constraints are similar to those of
other methods of the same type ([1]), that is, it obtains
good results for relatively short sets of data, it assumes
the channel is FIR with known length and its derivation
does not take into account the additive noise. As we will
see, the impact of the noise will be considered in the
optimization procedure of the algorithm, later on.

2. Problem formulation

For convolutive channels in TDMA and F3 channels in
OFDM, it is possible to express the channel distortion
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as a linear convolution. Assuming D-th order diversity is
available, for each of the receiving channels we have:

  Y z T z C z W z i Di i i( ) = ( ) ⋅ ( ) + ( ) = 1,K (1)

being T(z), Yi(z), Ci(z) and Wi(z), the z-transforms of
the transmitted and received signals, the channel
response and noise term in the i-th channel respectively.
Notice that if z-transforms are regarded as polynomials, it
turns out that in the noiseless case (assuming Ci(z)
coprime):

  T z g c d Y z Y z Y zD( ) = ( ) ( ) ( ){ }. . . , , ,1 2 K (2)

where g.c.d{·} stands for the greatest common divisor.
The proposed equalizer is based on this fact. It will try
to estimate the greatest common divisor of all Yi(z),
knowing that it is equivalent to the estimation of the
transmitted signal. Of course, in order to make use of
this property, the receiver must be able to observe the
complete signals Yi(z). This is the main difference  with
respect to other blind algorithms which have been
developed in the past. The equalizer will be developed
under the assumption that the receiver observes the
complete convolution output. Although Yi(z) is not
available if continuous transmission schemes are used,
this is not a major constraint because block transmission
is the most common scheme in mobile communications
(for both TDD and FDD). Next, two different
environments are shown where the present approach can
be applied.

Case a. Block transmission systems operating in
convolutive channels.

The proposed algorithm can be applied here if after each
frame is transmitted, a guard-time is introduced. If the
guard-time is longer than channel impulse response
duration then inter-frame interference disappears and Yi(z)
can be fully observed. Notice that this case includes both
single carrier and OFDM modulation systems, although
in the case of OFDM, the usual cyclic prefix extension
([2]) should be replaced by the already mentioned guard-
time. In the single carrier case, the diversity can be
achieved either by means of oversampling or by means of
spatial diversity.

Case b. OFDM in F3 channels.

Although in this case the distortion becomes
multiplicative, it can be compensated by means of



multichannel filtering, as shown next. Fig.1 summarizes
the scenario we will deal with (only those stages of the
OFDM transmission system relevant to our analysis are
shown). In [3] the authors recognized that because of the
IDFT/DFT performed at both ends of the channel, the
multiplicative distortion behaved in the transformed
domain as a convolutive channel. However, the
convolution performed was circular (CC) (⊗ ) rather than
linear (LC):

Y k T k C k W ki i i[ ] = [ ] ⊗ [ ] + [ ]
(3)

Unfortunately, equation (1) does not hold for circular
convolution ([4]) and so the channel cannot be equalized
by means of (2). In spite of that, it can be seen that
oversampling the received signals yi(t) is equivalent to
zero padding the transformed domain sequences T[z],
C1[z] and C2[z] as long as there was no aliasing
introduced when they were sampled at the symbol rate.
Moreover, as a result of the zero padding the CC will
operate as a LC of the not-oversampled sequences:

Y k T k C k W k T k C k W ki ZP i i i iZP ZP ZP
[ ] = [ ] ⊗ [ ] + [ ] = [ ] [ ] + [ ]*

(4)

In other words, in OFDM the CC can be turned into a
LC (*) at the expense of doubling the sampling rate.
Notice that in this case oversampling is necessary, but it
does not provide the desired diversity and so, more than
one antenna will be required.

As will be shown next, the equalizer will be developed
under the hypothesis of having FIR transmission
channels. In the case of OFDM in F3 environments, the
channel will be slowly varying and therefore it can be
regarded as a low-pass signal. However, its description
by means of only low frequency components (C[k] of
finite length) is approximated, and the equalizer
hypothesis will not be completely fulfilled in this case.
This will be an obstacle for equalizer performance, but
simulations will show that the proposed algorithm is
robust and also works for the case of OFDM in F3

channels.

3. Algorithm basis

In this section we will show how equation (2) can be
used to blindly estimate the equalizer coefficients and in
section 4 we provide an algorithm based o this idea. The
proposed algorithm is based on a generalization of the
Bezout equation ([5],[6]).

Property: Given a set of D polynomials Ai(z), then, the
equation:

A z a zi i
i

D

( ) ⋅ ( ) =
=
∑

1

1
(5)

has a solution in ai(z) iff Ai(z) are coprime. Furthermore,
assuming Ai(z) have all degree L-1, then the

polynomials ai(z) have degree M≥(L-1)/(D-1).

The relationship of equation (5) with multichannel
equalization and perfect reconstruction filter banks has
been acknowledged in the literature ([7]) and will become
evident once we will have formulated the equalization
problem mathematically. Figure 2 shows a block
diagram of the equivalent transmission channel and linear
equalizer for the multichannel formulation. In this figure,
Ei(z) stands for the i-th channel equalizer response and
Q(z) for the equalize output.

As shown, we will use FIR filters to equalize FIR
channels up to a multiplicative constant. As was noticed
in the literature too, this property of multichannel
approaches means that the zero-forcing equalizer does not
necessarily have to emphasize noise, although in any
case it will not perform in terms of noise as well as the
MMSE equalizer. Besides, it is worth mentioning that
in OFDM in multiplicative channels an FIR channel can
be perfectly  equalized by means of another FIR filter.

The output of the equalizer of this structure follows the
equation

Q z Y z E z T z C z E zi i
i

D

i i
i

D

( ) = ( ) ⋅ ( ) = ( ) ⋅ ( ) ⋅ ( )
= =
∑ ∑

1 1 (6)

This equation states that Q(z) will always be a multiple
of T(z). Q[k] will be the result of convolving the
transmitted data T[k] with the equivalent channel-plus-
equalizer filter H(z)

Q z T z H z H z C z E zi i
i

D

( ) = ( ) ⋅ ( ) = ( ) ⋅ ( )
=
∑( ) ;

1 (7)

Furthermore, notice that in order to achieve perfect
equalization (in the zero-forcing sense), i.e. Q(z)=T(z),
the following equation must be verified:

H z C z E zi i
i

D

( ) = ( ) ⋅ ( ) =
=
∑

1

1
(8)

Notice that deg{T(z)H(z)}≥deg{T(z)}, with equality
only when H(z)=1 (up to a multiplicative constant).
Therefore, asking for Q(z) of minimum degree
tantamounts to asking for Q(z)=T(z). This is the
condition over which the blind algorithm will be built.
The equalizer will be designed to yield an estmate Q(z)
of minimum length and this will lead it to the ISI-free
solution.

Equation (8) is in fact a particular case of (5), where
Ai(z)=Ci(z) and ai(z)=Ei(z). Therefore, the property
above tells us when this procedure will be feasible. It
will be able to achieve an ISI-free output if the channel
responses Ci(z) are coprime and if we let Ei(z) to have
enough coefficients.



The coprimeness condition is well known in the
literature and applies to all blind channel/equalizer
identification techniques based on second-order statistics
and deterministic approaches ([8],[1]). Notice that if the
channels were not coprime, the g.c.d{Yi(z)} would not
yield T(z), because it would rather include the common
factors of all channels too.

The fact that equation (8) has infinite solutions means
that the zero-forcing solution is not unique, being the
difference among all possible solutions their behavior in
front of the noise ([9]). Two particular cases are specially
interesting: D=2 and D=L. In the dual-diversity case
(D=2), we can find a closed form for all zero-forcing
solutions ([10]):

E z E z C z F z

E z E z C z F z

o

o

1 1 2

2 2 1

( ) = ( ) − ( ) ⋅ ( )
( ) = ( ) + ( ) ⋅ ( ) (9)

being E1o(z) and E2o(z) the only solution of length
M=L-1 (any other solution will have at least length L)
and F(z) an arbitrary factor which provides the infinite
available solutions. The fact that in the two channel case,
a unique solution exists for M=L-1 is well known ([7]).

In the extreme case of D=L, it turns out that M≥1. In the
spatial diversity case this means that the ISI dispersive
channel can be perfectly equalized by means of spatial
filtering only, a fact which was also previously reported
[11].

4. Algorithm formulation

Although the procedure can be applied to any number of
channels D, fo the sake of simpliciy the algorithm will
be developed for the dual diversity receiver (D=2). In this
case, any zero-forcing solution for E1(z) and E2(z) will
satisfy

T z Y z E z Y z E z( ) ( ) ( ) ( ) ( )= +1 1 2 2 (10)

This equation can be written in matrix form as in
equations (11) and (12). Notice that the formulation will
be different for the two cases considered in section 2.

Case a. Block transmission in Convolutional channels

In this case eq. (10) yields a Sylvester matrix
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where d is the duration of the transmitted frame at the
output of the channel, that is, if the length of the
transmitted frame is denoted by N then d=N+L-1.

Case b. OFDM in a multiplicative channel

As was mentioned in section 2, the description of the
channel response in the transform domain C[k] as a short
duration sequence is only approximated. Therefore, even
if the received signal is oversmpled, it will still be the
result of a circular convolution. To take into account this
fact, in this case we have modified matrix formulation of
the equalizer. the new equations take into account the
circular nature of the DFT and in the case of
oversampling by a factor of 2 they are
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Both, eq. (11) and (12) can be represented in as follows:
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where the set of equations has been grouped in two sets:
{    Y    t,     T    } and {    Y    o,    0   }. Notice that the second set of
equations only depends on the chanhel output. Thus, it
is possible to estimate the channel equalizer by
considering the following set of linear equations:

Y E
0

0= (14)

Equation (14) tantamounts to requiring the equalizer
output to have minimum length, as described in section
3. Furthermore, once an estimate of the channel equalizer
has been obtained, it is possible to recover the
transmitted data:

  

) )
T Y E

t
= (15)

It is important to remark that the presence of the noise in
the channel implies that equation (14) can not be longer
satisfied. If the channel is perfectly zero-forced by the
equalizer     E    , then, the residue in equation (14) will be
due only to the noise at the output of the equalizer.
Thus, if we want a channel equalization taking into
account the noise level and spectral distribution for a
better symbol decisions, we can minimize the following
cost function:

min

E

E Y Y EH H
0 0 (16)



with any non-trivial constraint. The best performance of
this criteria was found when taking the noise sub-space of
matrix     Y    o and applying the minimum-norm algorithm.
Other more simple non-trivial constrains have been also
considered with some performance degradation.

5. Simulations

The simulations in fig.3 illustrate the behavior of the
algorithm in the more demanding case of OFDM and
multiplicative distortion (the convolutional channel case
performs better). Fig.3a-3f show the results obtained for a
particular realization of the mobile channel with the
following parameters: OFDM frame of 128 QPSK
symbols, EbNo=22dB, Rayleigh fading channel
corresponding to fcarrier=1GHz, vehicle speed: 100 Km/h,
transmission rate 50Kb/s, oversampling factor: 2,
equalizer length M=5, noise subspace dimension: 2.
Figure 3g illustrates the performance averaged over 500
channel realizations with the same parameters except for
the EbNo, which was given two values: 22 and 32dB. It
shows the % of transmitted frames for which the received
EbNo in dB was below a specified threshold. Notice that
because of the random behavior of the channel sometimes
the output EbNo is higher than the input one.
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Fig.1. Simplified model of an OFDM transmission system for
a frequency flat fading channel.
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Fig.3. Algorithm simulation. (a)-(c) Multiplicative response
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Y2[k], and Q[k]; (g) (see section 5)


