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ABSTRACT

This paper addresses the problem of detection and discrim-
ination of the two phenomena double talk and echo path
change in a telephone channel. It is of uttermost importance
to quickly detect a change in the echo path while not confus-
ing it with double talk, since the echo canceller should react
di�erently whether an echo path change or double talk has
occurred. In this paper, novel algorithms of low complexity
are proposed. The system is described with a Markov mod-
ulated �nite impulse response (FIR) �lter. Depending on
whether double talk or an echo path change occurs di�erent
parameters in the channel model change abruptly. Based
on model assumptions, maximum likelihood (ML) parame-
ter estimates of the communication channel are obtained via
recursive (o�{line) or iterative (on{line) methods using the
expectation maximization (EM) algorithm. This enables
us to use a Hidden Markov Model (HMM) state estima-
tor to yield the minimum probability of error in identifying
the state of the communication channel, i. e. the possible
presence of double talk and/or echo path change. The pro-
posed algorithms are experimentally veri�ed using a real
speech signal and impulse responses created from measured
impulse responses from real hybrids.

1. INTRODUCTION

The objective of this paper is to propose a new method for
detection and discrimination of double talk and changes in
the echo path. This problem has previously been studied in
[2] where a likelihood based detection scheme is suggested
which compares a global channel model with a local one,
both estimated with the Recursive Least Squares (RLS) al-
gorithm.
Commonly utilized methods for reducing echo in the tele-

phone network are echo cancellers. The idea of the echo
canceller is to use a �nite impulse response (FIR) �lter to
approximate the transfer function of the echo path and let
the �lter coe�cients be adjusted based on the calculated
prediction error [1]. This simple solution to the problem of
echo control is unfortunately not applicable due to the ex-
istence of double talk, that is, both subscribers talk simul-
taneously. This phenomenon also gives rise to an abrupt
increase of the prediction error. One must avoid making
large corrections during double talk of the echo path in a
doomed{to{failure attempt to cancel the echo. Thus, the
adaptation rate should be decreased during double talk.
The conclusions to be made are that merely measuring

the prediction error will not discriminate between double
talk and echo path changes and that the echo canceller must
react di�erently whether double talk or a change in the
echo path has occurred. Furthermore, the detection and
discrimination algorithm must be fast in order to prevent
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the FIR �lter in the echo canceller from being misadjusted.
The key contribution of this paper is to use a Markov

modulated FIR �lter to describe the system. The theory of
Markov modulated FIR �lters is not new, see [3], but the
application of the theory to this problem is genuinely new.
By stating hypotheses corresponding to the di�erent phe-
nomena and by using the Expectation Maximization (EM)
algorithm, an o�{line detection scheme is formulated. Fur-
thermore, an on{line algorithm is suggested. The on{line
detection scheme is experimentally veri�ed using real data.
This paper is organized as follows. In Section 2 the prob-

lem is stated. Furthermore, the model and the notation
used in the following sections are introduced and assump-
tions are made. Section 3 the proposed algorithms are de-
rived. Next, in Section 4 some experimental results are
presented when real data is used. Finally, Section 5 gives
some concluding remarks.

2. PROBLEM DESCRIPTION

2.1. Signal Model

The system is described with a Markov modulated �nite
impulse response (FIR) �lter. The output of the �lter is
given by
yk = c0(sk)uk + : : : + cn�1(sk)uk�n+1 +

p
d(rk)vk; (1)

k = 1; 2; : : :

where fvkg is a zero mean white Gaussian process with vari-
ance 1, fukg is the known input signal, fskg and frkg are
two independent N{state, discrete time, homogeneous �rst
order Markov processes and �nally cj(i); i = 1; : : : ; N; j =
1; : : : n�1 and d(i); i = 1; : : : ; N are constants. The transi-

tion probability matrix of fskg is denoted by A
(s) =

�
a
(s)
ij

�
,

where a
(s)
ij = Pr(sk+1 = jjsk = i). Furthermore, a

(s)
ij � 0

and
P2

j=1
a
(s)
ij = 1 for each i. Similar notation and condi-

tions hold for frkg.
To facilitate the reading the following notations are

used C(i) = (c0(i); c1(i); : : : ; cn�1(i)) for i = 1; : : : ; N ,
YT = (y1; y2; : : : yT ) denotes the measurement sequence and

� =
�
C(i); d(i); A(s); A(r); i = 1; : : : ; N

�
denotes the model

parameter vector. Finally, let �0 denote the true model
parameters.
Remark: A more accurate and realistic model for describ-

ing the communication channel (instead of Eq. (1)) is the
following

yk =

n�1X
m=0

cm(sk�m)uk�m +
p
d(rk)vk (2)

Eq. (1) is used instead of (2) for the following reasons: 1)
Computationally less expensive when computing estimates
of the channel state. 2) If it is not crucial to detect the
possible abrupt change within a channel length, n.



2.2. Statement of Hypotheses

The state sk (or rk) at time k is an element of the set
Q = f1; 2g. sk denotes the current state of the echo path,
while rk denotes the presence or non{existence of double
talk.
Consider the system (1) at time k under the following

di�erent hypotheses concerning the states sk and rk.

H0 : sk = 1 and rk = 1

H1 : sk = 1 and rk = 2

H2 : sk = 2 and rk = 1

H3 : sk = 2 and rk = 2

The situation H1 occurs when double talk (DT) but no
echo path change (EPC) appears at time k, the situation
H2 when an EPC but no DT happens at time k, hypothesis
H3 when both an EPC and DT appear at time k and �nally
the null hypothesis when neither EPC nor DT has occurred
at time k.
To sum up, an EPC causes abrupt changes in the param-

eters cj while DT gives rise to an abrupt change in the noise
variance d. Similar hypotheses were used in [2].

2.3. Objectives

The objective of this paper is to suggest two di�erent de-
tection schemes, one o�{line and one on{line. These are
brie
y described below.

� O�{line channel identi�cation and change detection
Given all the data y1; : : : ; yT , it is desired to perform
the following two steps:

1. Parameter Estimation: Compute the maximum
likelihood (ML) parameter estimate of the model

�ML �
= argmax

�
f(YT j�) (3)

where f(�) is the probability density function.
2. Detection (State Estimation): Decide which hy-

pothesis holds, i. e. the possible presence of double
talk and/or change in the echo path with a mini-
mum probability of error based on the best (ML)
estimate of the channel. In the Bayesian framework
this is achieved by

ŝk = argmax
sk

f
�
sk j YT ; �

ML
�

(4)

r̂k = argmax
rk

f
�
rk j YT ; �

ML
�

(5)

� On{line channel identi�cation and change detection
Given the observations y1; : : : ; yl up to time l, it is
desired to perform the following two steps:

1. Parameter Estimation: Compute the maximum
likelihood (ML) parameter estimate of the model

�(l)
�
= argmax

�
f(Ylj�) (6)

where �(l) is the ML parameter estimate based on
the �rst l data points.

2. Detection (State Estimation): Decide which hy-
pothesis holds, i. e. the possible presence of double
talk and/or change in the echo path, by computing

ŝl = argmax
sl

f
�
sl j Yl; �

(l�1)
�

(7)

r̂l = argmax
rl

f
�
rl j Yl; �

(l�1)
�

(8)

Remark: A theoretical analysis of the e�ects of initial
estimates is beyond the scope of this paper. Furthermore,
the question relating to identi�ability is very di�cult and
not studied in this paper.

3. ANALYSIS

The expectation maximization (EM) algorithm suggested

in [6] is used to obtain �ML. Also, as a by{product of the
E{step, the maximum a posteriori (MAP) estimates of the
states sk and rk are obtained.
It is shown in [7] that under mild regularity conditions,

the sequence
�
�(l)
	
of the EM algorithm converges to a

stationary value of the likelihood function.

EM algorithm:

0. Determine the initial estimate �(1).

1. (E{step) Evaluate

Q
�
�; �(l)

� �
= E

�
ln f(YT ; ST ; RT j UT ; �)jUT ; YT ; �

(l)
	
(9)

2. (M{step) Compute

�(l+1) = argmax
�

Q
�
�; �(l)

�
(10)

3. l := l + 1. Iterate steps 1{3 until k�(l+1) � �(l)k < ",
where " is some speci�ed constant.

3.1. O�-line Algorithm

First, the l:th iteration of the E-step in the above mentioned
EM algorithm is performed. For notational convenience we
drop the dependence of the equations on l and UT .

ln f(YT ; ST ; RT ) =

TX
k=1

ln f(ykjsk; rk) + ln f(r1) + ln f(s1)

+

TX
k=2

[ln f(skjsk�1) + ln f(rkjrk�1)] (11)

The input signals, u
�n; : : : ; u0 are assumed to be known.

Taking the expected value of (11) and making the approx-
imation that the �rst n� 1 terms can be ignored (n� T ),
results in

Q
�
�; �(l)

�
=

TX
k=n

2X
i;j=1

ln

�
a
(s)
ij

�


(s)

k (i; j)

+

TX
k=n

2X
i;j=1

ln

�
a
(r)
ij

�


(r)

k (i; j)�
T � n+ 1

2
ln(2�)

�
1

2

TX
k=n

2X
i=1

ln(di)

(r)

k (i)�
1

2

TX
k=n

2X
i=1

d�1i

�

2X
j=1

 
yk �

n�1X
m=0

cm(j)uk�m

!2



(s)

k (j)

(r)

k (i)

(12)

where


(s)

k (i)
�
= P

�
sk = ijYT ; �

(l)
�
; i 2 f1; 2g (13)

and


(s)

k (i; j)
�
= P

�
sk = j; sk�1 = ijYT ; �

(l)
�
; i; j 2 f1; 2g (14)

Similar notations hold for the Markov chain r.
Maximizing (12) with respect to �, i. e. performing the

M{step gives

I. Update of the transition probability matrix, A.

a
(p)
ij =

PT

k=n+1


(p)

k�1(i; j)PT�1

k=n


(p)

k (i)
; (15)



II. Update of the noise variance, d.

di =

PT

k=n

P2

j=1

�
yk �

Pn�1

m=0
cm(j)uk�m

�2


(s)

k (j)

(r)

k (i)PT

k=n


(r)

k (i)

(16)
for p = r; s; i; j 2 f1; 2g.

III. Update of the coe�cients, C(j).
The elements cm(j) of C(j); m = 0; : : : ; n� 1; j 2 f1; 2g

are given by

TX
k=n

2X
i=1

d�1i yk

(s)

k (j0)

(r)

k (i)uk�m0

=

TX
k=n

2X
i=1

d�1i

n�1X
m=0

cm(j
0

)uk�m

(s)

k (j0)

(r)

k (i)uk�m0

(17)

for m0 = 0; : : : ; n� 1; j0 = 1; 2.

Finally, the forward probabilities for k = n; : : : ; T , are given
by

�k(jr; js)
�
= f(Yk; sk = js; rk = jrj�)

=

2X
is=1

2X
ir=1

f(ykjsk = js; rk = jr)a
(s)
isjs

a
(r)
irjr

�k�1(ir; is)

(18)

�m(jr; js) =
1

4
; for m = 1; : : : ; n� 1 (19)

and the backwards probabilities by

�k(ir; is)
�
= f

�
Y T
k+1jsk = is; rk = ir; Yk

�
=

2X
js=1

2X
jr=1

�k+1(jr; js)f(Yk+1jsk+1 = js; rk+1 = jr)

� a
(s)
isjs

a
(r)
irjr

(20)

for ir; is; jr; js 2 f1; 2g. Initialisation of the backward prob-
abilities are �T+1(ir; is) = 1; ir; is 2 f1; 2g.
Using the relations above, the following results are

achieved



(r;s)

k (ir; is) =
�k(ir; is)�k(ir; is)P2

is=1

P2

ir=1
�k(ir; is)�k(ir; is)

(21)

and


(s)

k (is) =

2X
ir=1



(r;s)

k (ir; is) (22)

for ir; is 2 f1; 2g.

IV. Channel state estimation.
The minimum probability of error estimate of the state

of the channel is achieved by

ŝMAP
k = argmax

sk

f
�
sk j YT ; �

(l)
�

r̂MAP
k = argmax

rk

f
�
rk j YT ; �

(l)
�

(23)

The memory and computational requirements of the o�{
line algorithm are shown Table 1.

O�{line per pass On{line

Memory Comp. Memory Comp.


k 22T O(22T ) 22 O(22)

A 2� 22 O(22T ) 2� 22 O(22)

C 2n O(n3T ) 2n O(n)
d 2 O(nT ) 2 O(n)

Table 1. Memory and computational requirements of the
algorithms.

3.2. On-line Stochastic Gradient Algorithm

The on{line stochastic gradient algorithm studied in [4] is
applied on the posed problem. That is, the parameters are
updated according to

�(k) = �(k�1) +
1� �

1� �k�1
K(k)Ik (24)

where
Ik = �Ik�1 + S

�
�(k�1); k

�
; I1 = S

�
�(k�1); k

�
; I0 = 0

(25)
where K(k) = 1=km and the incremental score vector is
de�ned by

S
�
�(k�1); k

� �
=

@E
�
ln f(yk; sk; rkjYk�1; Sk�1; Rk�1; �

(k�1)
	

@�

�����
�=�(k�1)

(26)

I. Update of the transition probabilities, A.
Details on the recursive update of transition probabilities

based on a di�erential geometric approach is found in [5].
Due to space limitation we omit details.

II. Update of the noise variance, d.
The element of the incremental score vector correspond-

ing to d(rk = ir); i 2 f1; 2g, is given by

d�2(rk = ir; k � 1)

2X
is=1

 
yk �

n�1X
l=0

cl(sk = is; k � 1)ut�l

!2

��k(ir; is)� d�1(rk = ir; k � 1)�
(r)

k (ir); (27)

where d(ir; k�1) is the estimate at time k�1 and �
(r)

k (ir) �
P(Yk; rk = ir).

III. Update of the coe�cients, C(j).
The element of the incremental score vector correspond-

ing to c(sk = is); is 2 f1; 2g, is given by

2X
ir=1

yk �
Pn�1

l=0
cl(sk = is; k � 1)uk�l

d(rk = ir; k � 1)
uk�n�k(ir; is): (28)

In Table 1 the memory and computational requirements
of the on{line algorithm are outlined.

4. EXPERIMENTAL RESULTS

In this section the on{line method which has been proposed
in this paper for detection and discrimination of double talk
and echo path changes is evaluated by simulations using a
real speech signal of length 4000 samples as input signal.
It is depicted in Fig. 1. The sampling frequency is 8000
Hz. To generate the di�erent hypotheses, the input signal
is segmented. A change in the echo path is simulated by
�ltering the segments through di�erent impulse responses.
The impulse responses used are shown in Fig. 1. They are
constructed from measured impulse responses from real hy-
brids using the most active part of the measured impulse



response. Motivation for this approach can be found in [8].
Double talk is simulated by �ltering the segments through
the same impulse response and then adding speech to one
of the segments. The parameters used in the simulations
are given in Table 2. The transition probabilities and the
noise levels are not estimated and are assumed to be known
a priori.
In Fig. 2 the root mean square estimation errors of the

channel coe�cients for the on-line scheme are shown. Fig. 3
depicts the true and estimated state of the communication
channel, i. e. the possible presence of double talk and/or
echo path change. As can be seen from these �gures the
on{line method succeeds in detecting the phenomenon dou-
ble talk. The echo path change that occurs simultaneously
as double talk is not detected. This is not disastrous since
double talk is the phenomenon that is most crucial to alarm
for, since the adaptation of the echo canceller should then
be stopped. Though, all other echo path changes are suc-
cessfully detected. The abrupt change in the error while
estimating the coe�cients of the �rst channel at approxi-
mately sample time k = 1000 is due to two main reasons: 1)
A short delay in detecting the echo path change. 2) Using
a zero forgetting factor (� = 0). Thus, increasing the for-
getting factor and/or using more data points, the algorithm
will slowly adapt to the true parameters.
For the examples described above, the on{line detection

and discrimination algorithm suggested in this paper seems
reliable. Furthermore, it has been observed, in simulations
studies not presented here, that the proposed on-line algo-
rithm performs extremely well for known statistics.

Number of samples T = 4000
Number of taps n = 50

Values of d (known) d(1) = 0:1; d(2) = 5000

Transition probabilities of s a
(s)
11 = a

(s)
22 = 0:999;

a
(s)
12 = a

(s)
21 = 0:001

Transition probabilities of r a
(r)
11 = 0:999; a

(r)
22 = 0:997;

a
(r)
12 = 0:001; a

(r)
21 = 0:003

Table 2. Parameters used in the simulations.

0 1000 2000 3000 4000
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

samples

Input signal

10 20 30 40 50

Impulse responses

Figure 1. Input signal and impulse responses.

5. CONCLUSIONS

In this paper two algorithms for detection and discrimi-
nation of double talk and changes in the echo path were
proposed. Their complexities were shown to be of order
O(n), where n denotes the channel length. The communi-
cation channel was modelled with a Markov modulated FIR
�lter. Therefore, abrupt changes in the channel character-
istics could be e�ectively included. Using the expectation
maximization algorithm, the maximum likelihood estimates
of the channel parameters were determined. By identifying
hypotheses corresponding to the two phenomena, two algo-
rithms could be formulated; one on{line and one o�{line.

Channel 1

Channel 2
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Figure 2. Root mean square estimation error of the
channel coe�cients for the on-line scheme.
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Figure 3. True and estimated state of the commu-
nication channel.

Simulations showed that the performance of the on{line al-
gorithm was satisfying when real speech was used as input
signal and impulse responses created from measured im-
pulse responses from real hybrids. Due to space limitations,
simulations using the o�{line scheme had to be omitted.
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