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ABSTRACT

Equalisation errors result from discrepancies between trans-
mitted symbols and their estimates at the channel equaliser
output in a digital communication system. This paper
presents an on-line test to detect the occurrence of equalisa-
tion errors without direct access to the channel input. The
test draws on the observation that for linear time-invariant
(LTI) channels the relationship between transmitted symbol
estimates generated by the equaliser and the noisy channel
output can be represented by an underlying linear time-
invariant model if and only if no equalisation errors are
present in the sequence of transmitted symbol estimates.
The presence of equalisation errors renders this relation-
ship time-varying, of which the occurrence is detected by
the proposed on-line test using the recursive least squares
(RLS) algorithm. Simulation studies corroborate the good
detection performance of the test.

1. INTRODUCTION

We propose a blind on-line test for detection of equalisa-
tion errors arising from discrepancies between transmitted
symbols and their estimates at the equaliser output in a
data communication system. The test aims to detect jump
changes in estimated channel impulse response derived from
the noisy channel output and decision device output obser-
vations.

O�-line tests for detecting equalisation errors or conver-
gence to open-eye local minima have been proposed in the
literature [1, 2, 3, 4]. In this paper we depart from the usual
o�-line approach to testing for equalisation errors by con-
structing an on-line test with reduced complexity. The new
test has relatively robust performance in the face of corre-
lated channel inputs and coloured Gaussian channel noise
with known variance but unknown covariance. The on-line
test is predicated on the criterion developed in [4]. Rather
than computing the least squares parameter estimates from
observation blocks as in [4], we make use of the recursive
least squares algorithm to construct our on-line test.

The paper is organised as follows. Section 2 gives a for-
mal description of the testing problem along with a state-
ment of the major assumptions made throughout the paper.
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In Section 3 we develop the on-line test criterion, implement
it as an on-line test, and discuss its performance and the
e�ect of uncertainties of the test parameters. Computer
simulations are presented in Section 4.

2. PROBLEM STATEMENT

Fig. 1 shows the set-up for the detection problem. The
channel input sequence fu(k)g, k 2 Z+, is drawn from a
digital modulation signal constellation. In order to sim-
plify the exposition we will restrict our attention to pulse
amplitude modulated channel inputs, i.e.

u(k) 2 S = f�1; : : : ;�(M � 3);�(M � 1)g 8k

where M > 0 is an even integer. The channel is assumed
to be a �nite impulse response (FIR) system with impulse
response of length P

h = [h0; h1; : : : ; hP�1]
T

where T is the transpose operator. The channel will be as-
sumed to be time-invariant during the test interval. The
channel noise n(k) is a stationary and possibly coloured
Gaussian random process with zero mean and known vari-
ance �2n. The knowledge of the noise autocorrelation is not
required even if the channel noise is coloured. No assump-
tions are made about the type of equaliser used. In this
sense, the on-line test is applicable to any equaliser struc-
ture, be it linear or nonlinear.

We will say that the channel input symbol estimates
fû(k)g 2 S are in error if they cannot be related to fu(k)g
by means of a time-invariant delay and/or phase shift (sign
reversal). This translates into the following objective for
error-free equalisation:

û(k) = �u(k ��) 8k: (1)

Here � is a real constant with j�j = 1 and � denotes the
equalisation delay.

Our objective is to detect the channel input estimates
violating the equalisation objective in (1) (which we will
simply call equalisation errors) without resort to the chan-
nel input at any time. In this sense, the task of detecting
equalisation errors needs to be carried out in a blindfolded
manner.
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Figure 1: Set-up for on-line detection of equalisation errors

3. ON-LINE TEST FOR EQUALISATION

ERRORS

3.1. Overview of the Test Criterion

To test for the presence of equalisation errors we will use
the following blind test criterion [4]:

Property. Provided that the channel H(z) is linear time-

invariant (LTI) and all �nite length subsequences of the

channel input sequence occur with nonzero probability, the

equaliser and decision device combination has an underlying
LTI model with the following response from û(k) to r(k)

r(k) =

P�1X
i=0

hi

�
û(k +�� i) + n(k) 8k (2)

if and only if fû(k)g is error-free. If, on the other hand,
fû(k)g contains equalisation errors, then (2) takes the form

r(k) =

P�1X
i=0

vi(k) û(k +�� i) + n(k) 8k (3)

where vi(k) = hi=(k�i), i = 0; 1; : : : ; P�1 is time-varying

with (k) , û(k +�)=u(k).

In the light of the above property an obvious approach
to testing for the presence of equalisation errors is to test for
time variations in the parameters of the underlying linear
model from û(k) to r(k). This approach is further pursued
in the next subsection.

3.2. On-line Test

The on-line test constructed here will be based on RLS esti-
mation of the underlying linear model parameters from û(k)
to r(k). In addition to satisfying the conditions stipulated
by the property in Section 3.1, the channel input will be
assumed to be persistently exciting in order that the RLS
algorithm does not su�er from numerical instability [5].

Least Squares Formulation:

Let us assume that no equalisation errors occur at the de-
cision device output and that the channel length P and the

equalisation delay � are known a priori. The noisy channel
output r(k) can then be written in terms of û(k) as

r = Av +n (4)

where r denotes the channel output regressor r = [r(k �
�); r(k � � � 1); : : : ; r(1)]T , A is the Hankel data ma-

trix A = [û(k); û(k � 1); : : : ; û(1 + �)]T with û(k) ,
[û(k); û(k� 1); : : : ; û(k�P +1)]T , v is the channel param-
eter vector scaled by 1=� v = [h0=�; h1=�; : : : ; hP�1=�]

T ,
and n is the channel noise vector n = [n(k��); n(k���

1); : : : ; n(1)]T .
The least squares estimate of v is obtained by solving

the normal equations ATAv̂ = AT r for v̂. In RLS, a
weighted version of the normal equations is solved recur-
sively using the matrix inversion lemma [6]. Upon settle-
ment of the initial parameters, the RLS estimate of v is
given by v̂(k) = P (k)�(k) where P (k) is the inverse of the
P �P autocorrelation matrix of the decision device output

P (k) =

 
kX

i=1+�

�k�iû(i)ûT (i) + ��kI

!�1

and �(k) =
Pk

i=1+� �k�iû(i)r(i��) is the crosscorrelation
vector with 0 < � < 1 denoting the forgetting factor and
� the soft-constrained initialisation constant [6], which is a
small positive number. We will subsequently assume that
k is su�ciently large and � is very small so that the term
��kI in P (k) can be neglected safely.

Our primary interest lies in the statistical properties of
the RLS update term �(k) = v̂(k)� v̂(k � 1). In terms of
v, the RLS parameter estimates can be written

v̂(k) = v + P (k)

kX
i=1+�

�k�iû(i)n(i��):

RLS Update with No Equalisation Errors:

Under the assumption of no equalisation errors, the RLS
update term becomes

�(k) =
�
�P (k)� P (k � 1)

� k�1X
i=1+�

�k�1�iû(i)n(i��) +

P (k)û(k)n(k ��)
(5)

where the summation in the �rst term is the only quantity
that cannot be readily evaluated. If, however, � is chosen
very close to 1 so that P�1(k�1)� û(k)ûT (k)=�, then we
can write to a good approximation �P (k)� P (k � 1) � 0

for large k, which results in �(k) � P (k)û(k)n(k � �).
Then k�(k)k22 can be approximately written as k�(k)k22 �

n2(k��)
PP

i=1

�
pTi û(k)

�2
where pTi denotes the ith row of

P (k).
Normalisation of k�(k)k22 by its approximate mean value

yields

T (k) =
k�(k)k22

�2n
PP

i=1

�
pTi û(k)

�2 � n2(k ��)

�2n
(6)

which is distributed approximately according to central chi-
square with one degree of freedom (�21). Note that in (6) no
knowledge of the channel noise autocorrelation is required
even though the channel noise may be coloured.



RLS Update with Equalisation Errors:

If û(k) is in error, the RLS update term becomes

�(k) � P (k)û(k)n(k ��) + h0

�
u(k��)

û(k)
� �

0

�
P�1

:
(7)

The normalised squared `2 norm of �(k) now takes the form

T (k) �
n2(k ��)

�2n
+

h20

�
u(k��)

û(k)
� �

�2
�2n
PP

i=1

�
pTi û(k)

�2
+

2h0p
T
1 û(k)n(k ��)

�
u(k��)

û(k)
� �

�
�2n
PP

i=1

�
pTi û(k)

�2 :

On-Line Hypothesis Test:

At this stage it is instructive to make a comparison between
the (approximate) distributions of T (k) under no equalisa-
tion errors and in the presence of an equalisation error. In
the former case, T (k) has unit mean, while in the latter
T (k) has the following mean conditioned on P (k) and û(k)

EfT (k) j P (k); û(k)g = 1 +
h20

�
u(k��)

û(k)
� �

�2
�2n
PP

i=1

�
pTi û(k)

�2 � 1:
(8)

In the hypothesis testing framework we can construct the
following on-line threshold test to distinguish between the
null hypothesis (H0: û(k) is correct) and the alternative
hypothesis (H1: û(k) is in error)

T (k)
H1

?
H0

� (9)

where the test threshold � is determined by PFA = Prf�21 >
�g = � where � is the signi�cance level.

3.3. Unknown Channel Length and Equalisation

Delay

Let P 0 denote the assumed channel length and �0 the as-
sumed equalisation delay (as opposed to their true values).
As shown in [4, Proposition 2], the following inequalities
are required to hold in order for the on-line test to work
properly: (i) �0 � � and (ii) P 0 � P ��+�0. If �0 > �
and (ii) holds, equalisation errors can be detected with a
minimum delay of �0 �� [7]. Blind estimation of a lower
bound on � is addressed in [2, 4].

3.4. Detection Performance and Goodness of

Approximation for the Test Statistic Distribution

The detection performance of the on-line test is a�ected
inter alia by the magnitude of h0 and the channel noise
variance �2n (see (8)). After the �rst incidence of an equal-
isation error, the error propagates through the entries of
v. Thus even if the error goes unheeded at its �rst oc-
currence, say, because of a small jh0j, the chances of its
detection may improve at consecutive time instants as it
goes through larger components of h.

True Estimated
� = 0:970 � = 0:999

EfT (k) j H0g 1 1.1574 1.0191

VarfT (k) j H0g 2 2.7528 2.0629

0.050 0.0679 0.0498
0.025 0.0370 0.0255

PFA 0.010 0.0176 0.0106
0.005 0.0084 0.0057
0.001 0.0025 0.0012

Table 1: True and estimated mean, variance and PFA of
T (k) under H0.

If n(k) is white Gaussian, then the conditional mean of
k�(k)k22 given P (k), D(k) = �P (k)� P (k � 1) and A is

E
�
k�(k)k22 j P (k);D(k);A

	
= �2n

PX
i=1

��
p
T
i û(k)

�2
+
�
d
T
i û(k � 1)

�2
+ �2

�
d
T
i û(k � 2)

�2
+ � � �

+ �2(k��)
�
d
T
i û(1 +�)

�2� (10)

where dTi denotes the ith row of D(k). The true value of
the conditional mean is clearly greater than the approxima-

tion �2n
PP

i=1

�
pTi û(k)

�2
. If n(k) is coloured, the conditional

mean in (10) will include additional crossterms, which could
either increase or decrease the true mean with respect to
the approximation depending on the noise autocorrelation.
Thus, the dTi û(j), j = k � 1; k � 2; : : : ; 1 + �, should be
negligible compared to pTi û(k) to ensure a good approxi-
mation.

4. COMPUTER SIMULATIONS

In the simulations we have assumed a 4-level PAM channel
input which is generated by a Markov chain with transition
probability matrix

� =

2
64
0:3 0:2 0:4 0:1
0:2 0:4 0:2 0:2
0:4 0:2 0:3 0:1
0:1 0:2 0:1 0:6

3
75

where the (i; j)th entry is Prfû(k) = sj j û(k � 1) = sig,
i; j = 1; : : : ; 4 with [s1; s2; s3; s4] = [�3;�1; 1; 3]. The
Markov chain has equiprobable initial states.

The channel is a nonminimum-phase FIR system

H(z) = 0:1 � 0:6z�1 + 0:4z�2 + 0:2z�3

whose output x(k) is corrupted by additive coloured Gaus-
sian noise n(k) with �2n = Rn(0) = 0:0120, Rn(�1) =
�0:0048, Rn(�2) = 0:0020, and Rn(�) = 0, j� j > 2.

The (approximate) null hypothesis distribution of T (k)
has been simulated using P 0 = 10 and �0 = 0. Table 1 lists
the estimated mean, variance and probability of false alarm
values of the test statistic T (k) along with their true values
under the assumption T (k) � �21 for 10,000 observations
and two values of the RLS weighting factor. Note that
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Figure 2: Plot of on-line test statistic T (k) versus k and
equalisation errors
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Figure 3: Close-up of test statistic T (k) for the �rst 50
symbols

� = 0:999, being very close to 1, yields a more accurate
approximation than � = 0:970 as expected.

The detection performance of the on-line test has been
simulated using H(z) and a 30-tap linear equaliser f�ig fol-
lowed by a 4-level quantiser, yielding CLEM=0.8777 (i.e.
the eye is open). The equalisation delay is � = 11, and the
test parameters were chosen as P 0 = 10, �0 = 15 and � = 11
(� = 9 � 10�4). The RLS parameters were � = 10�5 and
� = 0:995. Fig. 2 shows a plot of the on-line test statistic
for 400 transmitted symbol estimates. The test statistic for
the �rst 50 symbols are shown in Fig. 3 where it is seen that
equalisation errors are detected with a delay of 5 symbols
which is larger than �0 ��. The reason for this observed
extra delay is that jh0j

2 � jh1j
2 (see (8)). Fig. 4 shows the

tested equaliser output sequence y(k) =
PL�1

i=0 �ir(k � i).
It is clear that the eye pattern test would fail to detect the
individual equalisation errors.
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Figure 4: Plot of equaliser outputs during the testing inter-
val

5. CONCLUSION

A blind on-line test for equalisation errors has been devel-
oped, which has a low computational complexity of O(P 02).
The detection performance of the test was analysed and
demonstrated in simulation studies. While the well-known
eye pattern test may fail to detect equalisation errors in sce-
narios we dealt with, the proposed on-line test exhibits high
detection probability for isolated equalisation errors with
a small delay depending on the channel impulse response.
One possible improvement would be to employ parameter
resetting after the detection of an equaliser error to avoid
false alarms due to the exponential decay of T (k).
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