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ABSTRACT

In this paper1, two probabilistic adaptive algorithms for
jointly detecting active users in a DS-CDMA system are
compared. The �rst one, which is based on the theory
of Hidden Markov Models (HMM) is proposed within the
CDMA scenario and compared with the previously develo-
ped Viterbi-based algorithm. Both techniques are comple-
tely blind in the sense that no knowledge of the signature
sequences, channel state information or training sequences
is required for any user. After convergence, an estimate of
the signature of each user convolved with its physical chan-
nel impulse response (CIR), and estimated data sequences
are provided. This CIR estimate can then be used to switch
to any decision-directed (DD) adaptation scheme. Perfor-
mance of the algorithms is veri�ed with simulations as well
as with experimental data from an Underwater Acoustics
(UWA) environment. In both cases, performance is found
to be highly satisfactory, showing the near-far resistance of
the analyzed algorithms.

1. INTRODUCTION

Recently, multiuser detection in CDMA systems has recei-
ved increasing attention [1]. Detectors developed so far
(conventional receiver, optimum detector, decorrelating and
the MMSE detectors [2]) should know (or should be able to
acquire) one or more of the parameters from the following
list [3]:

1. The signature waveforms of the desired user and/or
interfering users.

2. The timing (bit-epoch and carrier phase) of the desired
user and/or interfering users.

3. The received amplitudes of the interfering users in re-
lation with that of the desired user.

The MMSE detector is more suited for adaptive implemen-
tation on the basis of mean square error (MSE) minimiza-
tion [1]. In that case, previous knowledge on interferers can
be circumvented by making use of 4) training sequences,
not only during the startup period but also after sudden
changes in the channel impulse response (CIR) or when a
new active user appears. The need to retransmit training
sequences may be cumbersome in multiuser communicati-
ons so that, in recent years, a large e�ort has been made in
developing blind algorithms which perform CIR acquisition
and data detection without such information (i.e. only on
the basis of the channel output).
The algorithms presented and compared in this paper,

are absolutely blind in the sense that no knowledge of 1)
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to 4) is required for proper operation. They both belong to
the group of Probabilistic algorithms [4, 5] and lead to joint
channel estimation and data detection. These methods ex-
hibit higher computational complexity but they outperform
other blind methods (i.e. Bussgang and Polyspectra-based)
since they make better use of the known statistical informa-
tion on the input signal and, in general, require less symbols
to obtain an accurate CIR estimate.

2. SIGNAL MODEL

We consider the general asynchronous multiple-access chan-
nel model in which the received signal is given by

r(t) =
X
n

KX
k=1

bk[n]hk(t� nT ) + �w(t) (1)

where hk(t � nT ) is the overall complex channel impulse
response of user k, given by the convolution of its M -chip
signature sequence, physical channel and receiving �lter res-
ponses. For ease of notation, it incorporates the amplitude
and the delay for user k and its duration is assumed to be
no longer than L symbol periods. The total number of ac-
tive users is K and their transmitted data sequences are
binary independent symbols bk[n] 2 f�1; 1g. The symbol
rate is 1=T and w(t) is normalized AWGN. The multiple-
access channel is sampled at a rate fs = 1=Ts = M=T to
derive the discrete vector sequence r[n]:

r[n] = [r(nT ); : : : ; r(nT + (M � 1)Ts)]
T (2)

where T denotes transpose operation. The observation r[n]
can be modeled as aM -length vector, probabilistic function
of the state vector s[n]:

r[n] = H[n]s[n] +w[n] : (3)

Since at any given time a maximum of L symbols for each
user a�ect the observation, there are N = 2KL possible
state vectors corresponding to all combinations of L binary
symbols of the K active users. We denote each of the pos-
sible states as the KL-length vector sj ,

sj 2 S = fs1; s2; : : : ; sNg (4)

such that,

sj =
�
s
T
j1; : : : ; s

T
jK

�T
; (5)

sjk =

h
s
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jk
; : : : ; s
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jk

iT
; s

(l)

jk
2 f1;�1g : (6)

The actual state at time instant nT is denoted by s[n] 2 S.
The M �KL matrix H[n] depends on the overall discrete
impulse responses for each user, denoted by matrices Hk[n]

H[n] = [H1[n]; : : : ;HK [n]] : (7)



Each of these matrices incorporates a vector response for
the L symbols that may be present in the observation due
to the ISI or to the asynchronous reception,

Hk[n] = [hk0[n]; : : : ;hk(L�1)[n]] (8)

and, �nally, the resulting signature for each user k and sym-
bol l:

hkl[n] =

2
4

hkl((n+ l)T )
...

hkl((n+ l)T + (M � 1)Ts)

3
5 : (9)

The noise is characterized as the M -length vector w[n]:

w[n] = � [w(nT ); : : : ; w(nT + (M � 1)Ts)]
T : (10)

This signal model is common to both the BW-based and
the Viterbi-based algorithms and will be further re�ned to
meet the formal requirements of each algorithm.

3. BLIND IDENTIFICATION AND
DETECTION ALGORITHMS

We propose two algorithms on the basis of the
Baum&Welch (BW) reestimation procedure and the Vi-
terbi algorithm. To achieve channel identi�cation, both
algorithms operate on a trellis-like structure.

3.1. Multiuser Adaptive Baum&Welch algorithm
(MABW)

The BW algorithm, which relies on the theory of Hidden
Markov Models (HMM), is essentially identical to the EM
method and it is known to lead, at least, to a local maxi-
mum of the likelihood function [6]. When dealing with time-
varying channels, an adaptive version called ABW (Adap-
tive Baum&Welch) can be considered [7]. The probability,

j [n], of being in state j : 1::N = 2KL in the trellis at time
instant n given the sequence and the HMM is computed by
means of the Forward-Backward algorithm [8]. The estima-
ted multiuser CIR is updated at the symbol rate considering
the steepest-descent adaptation scheme:

Ĥ[n] = Ĥ[n� 1] + �hE[e[n]s[n]
H ]; (11)

where

e[n] = r[n] �m[n] = r[n]� Ĥ[n]s[n] (12)

and �h is the adaptation constant. In our blind environ-
ment, the expectation in the gradient term will be compu-
ted on the basis of the received sequence up to instant n+�
(where the lag � is a design parameter taking typical values
of 4-8 symbols), and the model at instant n� 1:

Ĥ[n] = Ĥ[n� 1] + �hEr
n+�;�n�1

�
e[n]s[n]H

�
(13)

= Ĥ[n� 1] + �h

NX
j=1

j [n]ej [n]s
H
j (14)

and

ej [n] = r[n] �mj [n] = r[n]� Ĥ[n� 1]sj j = 1::N: (15)

Data detection is performed following an individually most-
likely state criterion [8].

3.2. Multiuser Adaptive Viterbi algorithm (MAV)

This blind estimation algorithm [5] is initialized with an ar-
bitrary CIR estimate for each state in the model. Note that,
now, such CIR matrix contains as many matrices de�ned in
Eq.(7) as the number of states. Namely, the M � KLN
matrix:

Ĥj [n] = Ĥ[n] jstate j (16)

Ĥ[n] =
�
Ĥ1[n]; : : : ; ĤN [n]

�
: (17)

Each estimate is updated following a stochastic-gradient
(LMS) scheme that only takes into account the most likely

preceding state among the 2K predecessors:

Ĥj [n] = Ĥi[n� 1] + �heij [n]s
H
j ; (18)

where the state si is the ML predecessor to state sj , and
the error vector eij [n] is de�ned as:

eij [n] = r[n]� Ĥi[n� 1]sj j = 1::N: (19)

In this second case, data is recovered following a most-likely
state-sequence (MLSE) criterion.

3.3. Considerations

These two blind algorithms are well-suited for the startup
period of a centralized receiver; after convergence, we can
switch to a DD mode of operation (for example, a linear
equalizer updated with a MMSE strategy [2]). Simulation
results in [9], show that the CIR estimate obtained with
the blind algorithm is good enough to make such change
feasible.
As for computational complexity, the most-contributing

section is computation of i[n] in the case of the MABW al-
gorithm, whose counterpart for MAV is the computation of
the metrics. Both contribute similarly to the total amount
of operations (O(N2)) up to a multiplicative factor (�eq+1)
in the case of the MABW algorithm. This factor shows up
as a consequence of the need of recursively (re)compute the
backward variable [8] in the process of obtaining i[n]. For
example, if the backward variable is computed at each ite-
ration step then �eq = �. However, it is not an important
drawback since this factor can be signi�cantly reduced with
the use of the sawtooth-lag scheme [10] where �eq, the equi-
valent lag factor, can be forced to be approximately equal
to 1. Regarding the rest of sections, they all contribute on
the order of O(N) or less, and equally for both algorithms.
As a �nal conclusion, the computational complexity of both
strategies is approximately the same for a moderate num-
ber of users and low delay-spread, and on the same order
of magnitude in any other case.
Whereas the MABW algorithm is (slightly) more costly

in terms of number of operations per symbol, MAV demands
more memory resources. This is a direct consequence of
keeping track of CIRs separately (i.e. one estimate for each
state) which increases memory requirement exponentially
in the number of users and the duration of the CIR.
Finally, noting that when the multiuser signal is a�ec-

ted by the near-far e�ect, both algorithms tend to con-
verge towards local maxima [5]. To overcome this problem,
we adopted the strategy suggested in [5] called coherence
checking.

4. COMPARATIVE PERFORMANCE STUDY

4.1. Simulation Analysis

The system under study operates at the symbol rate em-
ploying a BPSK modulation scheme. In all cases, K = 4
users contributed to the CDMA signal. Gold sequences with
M = 7 chips were used as spreading sequences; coherence
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Figure 1. Learning curves. MABW (solid) and
MAV (dash-dot). Amplitudes:3,2,1,1. SNR=12 dB.

checking were performed every S = 50 symbols. A statio-
nary and single-path model was considered for the channel.
For all simulations, the incoming signal was sampled at the
chip rate. Simulation results are averaged over 50-run tests.

The estimation noise -learning curves- for all users and
both algorithms are plotted in Fig.1. Such parameter is
the euclidean distance between CIR and the corresponding
estimate. A slower convergence for the MABW algorithm
is observed. This fact is a direct consequence of the way
in the CIR estimates are obtained: an average over all the
possible present states (MABW) or, otherwise, an update
of the CIR estimate corresponding to each state considering
only the preceding state (MAV). Within �rst iteration steps,
when there is not a predominant path in the trellis, all
states contribute to update the CIR estimate; this extent
guarantees convergence of MABW at least towards a local
minimum but, of course, brings down convergence speed.

We also note that, despite of the joint detection strategy,
users are extracted sequentially according to their power
level.

Regarding to estimation noise in the �nal steady state, si-
milar levels for both algorithms are observed. In fact, when
convergence has been achieved, it is absolutely equivalent
to have a single averaged CIR estimate with no contribu-
tion from states di�erent from the most likely (MABW), or
to have a very predominant state whose CIR estimate will
be chosen as the most likely at each instant (MAV).

In Fig.2, we plot the response of both systems in an en-
vironment with very low SNR (6dB, for the weakest user).
Users separation is also achieved at the expense of a slightly
slower convergence rate for the weakest users in the MABW
algorithm. Behaviour when facing strong near-far e�ect
(approx. 30 dB) is depicted in Fig.3. Convergence is faster
now since, as long as special measures were adopted to over-
come near-far e�ect (coherence checks), the di�erence in
the received amplitudes helps the algorithm to distinguish
between signals coming from di�erent users. To conclude
this section, the algorithms were tested considering asynch-
ronous reception (Fig.4). Delays considered (wrt the �rst
user) were 1, 2 and 3 chips. We do not observe signi�cant
changes in the behaviour with respect to the synchronous
case. Note, however, that the number of states is four times
higher since double the number of taps are required for the
CIR estimate.
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Figure 2. Learning curves in a very low SNR en-
vironment: MABW (solid) and MAV (dash-dot).
Amplitudes: 3,2,1,1. SNR=6 dB.

4.2. Evaluation with Experimental Data

Further validation of the algorithms has also been carried
out by considering experimental data obtained in a Un-
derwater Acoustic (UWA) environment from a vertical link
established between acoustic modems. Two users contri-
buted to the CDMA signal (signatures:[1,1,1] and [1,-1,1];
gaussian shaping pulses). The SNR was on the order of 20
dB and the di�erence in received power between users 10
dB (approx.). ISI was negligible (see [11] for details).
We chose the span of the estimated CIR to be equal to

L = 2 symbols and an oversampling factor of 4 (4 sam-
ples/chip). The rest of parameters were assigned the same
values as those mentioned before. Results for the MABW
algorithm are plot in Fig.5. First, we observe that the es-
timates for signatures and amplitudes (time n=550) cor-
responding to both users match the ones described above.
Convergence is achieved within the �rst 150 symbols after
one coherence compensation at n = 50. Only 2 and 21 er-
rors were observed respectively in the whole packet. Similar
results were obtained with the MAV algorithm.

5. CONCLUSIONS

In this paper, two probabilistic algorithms for JD of DS-
CDMA signals and channel estimation have been presen-
ted and compared. The MABW algorithm is based on the
theory of Hidden Markov Models, whereas the MAV is a
blind version of the well-known Viterbi algorithm. Both
algorithms are adaptive and the estimate of the convolu-
tion of each user's signature with the physical channel is
recursively updated using gradient schemes. Nevertheless,
since the receiver operates blindly, training sequences are
replaced by estimates of the transmitted data based on the
received signal and the present estimate of the parameter
set.
As a consequence of algorithmic di�erences, the MABW

algorithm is slightly more computationally intensive but,
in contrast, memory requirements are less strict than those
of MAV. Simulation study indicates that both algorithms
exhibit a very similar behaviour. They only di�er in conver-
gence time which is higher in the case of MABW. In turn,
this assures the convergence of this algorithm, at least, to a
local maximum of the likelihood function. Performance of
the MABW algorithm has also been veri�ed on experimen-
tal data obtained in an UWA environment.
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Figure 3. Learning curves with near-far e�ect (30
dB): MABW (solid) and MAV (dash-dot). Ampli-
tudes: 30,7,5,1. SNR=12 dB.

Both algorithms are well-suited for the startup period of a
centralized multiuser receiver; after convergence, switching
to a less computationally-intensive DD adaptation method
would be advisable.
Undergoing research focuses on algorithm extension to

include array observation. Further analysis is, mainly, ap-
plication speci�c, including tests with synthetic signals ge-
nerated by standard test channels (such as those proposed
in the GSM recommendations) and exhaustive tests with
experimental data both in radio and UWA environments.
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