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ABSTRACT

We propose new methods for fast blind identi�cation and

equalization of communication channels based on channel

outputs sampled at symbol rate. These methods exploit the

FA property of the transmitted sequence as well as the alge-

braic structures and relationships of the symbol and channel

parameter matrices to achieve blind equalization. The block

based methods proposed herein are fast converging and data

e�cient. Simulated studies have illustrated the proposed

methods capable of achieving reliable blind equalization with

sequence length as short as 20 samples over a wide-range of

SNR.

1.. INTRODUCTION

Blind channel identi�cation and equalization is of consid-
erable interest and importance in the area digital commu-
nications. Blind equalizers may o�er higher transmission
e�ciency and bandwidth conservation by shortening and
eliminating the training sequence. Particularly in mobile
communications where training is not e�cient for rapidly
time-varying channels.
One class of blind equalization methods is based on ex-

ploiting the higher order statistical information in the sam-
pled channel outputs[1][2]. A common drawback of these
methods is their slow convergence due to the large num-
ber of sampled channel outputs needed to obtain good es-
timates of the higher order statistics. Another class of
blind equalization methods exploits the FA property and
trellis relationship between the channel input and outputs.
Among these methods include blind trellis search [3] and
\quantized" channel approach[4]. These methods converge
rapidly and can o�er optimal solution after achieving global
convergence. For channels with long impulse responses,
the computationally complexity may become prohibitive.
Recent research focus on blind equalization are based on
oversampled channel outputs (see [3] and the references
therein). While having the advantage of rapid convergence,
these algorithms may faced singularity problem when the
channel parameter matrix achieves full rank through exces-
sive oversampling.
This paper proposes methods for fast blind equalization

and identi�cation of data communication channels. The
methods proposed herein may o�er a mean to alleviate the
problem of slow convergence, excessive oversampling and, to
some extent, computational complexity that are commonly
encountered in most blind equalization methods. The key

idea of the approach proposed herein is to exploit the FA
property of the transmitted symbols, the algebraic struc-
tures and, the relationships between the channel output and
symbol and channel parameter matrices. We formulate the
blind identi�cation problem in a least squares(LS) frame-
work based channel outputs sampled at symbol-rate. Three
block-based algorithms for jointly estimating the channel
parameters and transmitted symbols are proposed. While
sub-optimal, these proposed methods achieve substantial
computational saving by relaxing the structural constraints
on the symbol matrix.
Simulation results show the proposed methods con-

verge rapidly and blind equalization and identi�cation are
achieved with small number of channel outputs. We use
the maximum likelihood channel estimator using known se-
quence to examine the performance of the methods pro-
posed herein. While locally convergent, the mean squares
errors of the channel estimates achieved by the proposed
algorithms are very close to the maximum likelihood esti-
mator over a wide range of signal to noise ratio and sequence
length.

2.. PROBLEM FORMULATION

The output of a FIR channel sampled at symbol rate is
given by

xn =

n�L+1X
k=n

skhn�k + vn: (1)

vn is a sequence of white noise and sk belongs to a FA set.
Given an equaliser of order m and assuming the channel to
be quasi-stationary for the period P+1, the channel output
vector in matrix notation,

xn = C(h)sn + vn (2)

where

xn = [xn; xn�1; � � � ; xn�m+1]
T

C(h) =
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sn = [sn; sn�1; � � � ; sn�L�m+2]
T

vn = [vn; vn�1; � � � ; vn�m+1]
T
: (3)



C(�) is the channel parameter matrix parameterized only

by sampled channel impulse response h = [h0; � � � ; hL�1]
T
.

Augmenting the P + 1 number of channel output vectors
into Xn = [xn;xn+1; � � � ;xn+P ], we have

Xn = C(h)Sn+Vn; (4)

where Sn = [sn; � � � ; sn+P ] and Vn = [vn; � � � ; vn+P ].
Note Sn and Xn are Toeplitz matrices parametrized
by ~xn = [xn+1�m; � � � ; xn; � � � ; xn+P ]

T and ~sn =

[sn�L�m+2; � � � ; sn; � � � ; sn+P ]
T , respectively. The blind

identi�cation and equalization problem can be casted:Given
Xn, jointly estimate h and Sn.

3.. LEAST SQUARES ESTIMATES

From (4), we observe the number of measurements is less
than the number of unknowns where the unknown param-
eters are a mixture of continuous and FA parameters. If all
the unknown parameters are taken to be continuous, the
problem considered herein will be ill-posed. However by ex-
ploiting the FA property of the transmitted data sequence,
it is still possible to identify and estimate fh;Sng up to a
sign ambiguity. Identi�ability conditions have been derived
in [2]. From (4), the LS estimates of fh;Sng is given by

nbh;b~sno = arg min
h;~sn

jXn �C(h)Snj
2
F

= arg min
h;~sn

j�n � (STn 
 Im)�hj
2 (5)

with �n = vec (Xn) and � is a full rank selection matrix
such that �h = vec(C(h)). The vec(�) and 
 operators
denote the stacking of a matrix's column vectors and Kro-
necker product, respectively. Substituting the least squares
estimates of h, (5) can be concentrated into

b~sn = argmin
~sn

Jc =

���P?Q(~sn)
�n

���2 ; (6)

where P?A = I�A(ATA)�1AT and Q(~sn) = (STn 
 Im)�.

In (6), ~sn is estimated with full exploitation of the Toeplitz
structure of Sn and C(h). While dimensionality is slightly
reduced, the estimation of ~sn entails optimizing a highly
nonlinear cost function. Such direct search has limited
applications as the number of selections of ~sn grows pro-
hibitively large even for small fm;P;Lg.

In this paper we alleviate this problem by relaxing the
structural constraint on Sn and derive three iterative block
algorithms for jointly estimating fSn;hg. The general ap-
proach taken herein for optimizing the mixed continuous-FA
parameters cost function is based on the alternating mini-
mization procedure. Speci�cally, the continuous-FA param-
eters optimization is decoupled into two steps, wherein in
the �rst step, the continuous variables are optimized while
the FA parameters are held �xed and vice-versa in the next
step. This decoupled optimization is performed iteratively
until convergence is achieved. The three blind channel iden-
ti�cation and equalization algorithms are outlined as follow.

Algorithm 1: Approximative LS I (ALS I)

This algorithm fully relaxes the constraint on the Toeplitz
structure of Sn. Given initial estimate h(0) and set k = 0,
we have

1. With the Toeplitz structure constraint on Sn fully re-
lax, set k = k + 1 and estimate the \unstructured"
symbol matrix from

bS(k)n = argmin
sn

jxn �C(bh(k�1))snj2 + � � �

+arg min
sn+P

jxn+P �C(bh(k�1))sn+P j2: (7)
2. Compute Q = (bS(k)n 
 Im)� and estimate the channel

impulse response by

h
(k) = (QT

Q)�1Q�: (8)

3. Repeat (1)-(2) until jh(k) � h(k�1)j < � where � is a
prede�ned threshold.

Algorithm 2: Approximative LS II (ALS II)

The Toeplitz structure of Sn relates sn to sn+1 by a linear
shift. Based on this property, we derive a decision feed-
back approach which implicitly imposes a partial Toeplitz

structure onto estimated symbol matrix bSn. Introducing
the extraction operator

f(sn; p; q) = [sn�p; sn�p�1; � � � ; sn�q ]
T
; (9)

we can write sn = f(sn; 0; nff +nfb�1) and decompose sn
into

s
T
n = [sff(n)

T
; sfb(n)

T ]T

sff (n) = f(sn; 0; nff � 1)

sfb(n) = f(sn; nff ; nff + nfb � 1): (10)

where nff and nfb are the feedforward and feedback length
selected such that nfb + nff = L+m� 1.
The proposed method is outlined as follows: Given the

initial estimates of h(0), s
(0)

fb (0) and k = 0

1. Set k = k + 1.

2. S
(k)
n is estimated column by column as follows. De-

compose

C(bh(k�1)) = [Cff(bh(k�1));Cfb(bh(k�1))]
of appropriate dimensions.

3. For t = n to n+ P , compute

x
y
t = xt �Cfb(bh(k�1))bs(k)fb (t)

and estimate bs(k)ff (t) from

bs(k)
ff

(t) = arg min
sff (t)

jxyt �Cff (bh(k�1))bsff (t)j2:

4. Update symbol vector bs(k)t = [bs(k)ff (t)
T
s
(k)

fb (t)
T
]T .



5. Extract the next feedback vector to be used at t+ 1:

bs(k)
fb

(t+ 1) = f(s
(k)

t ; nff � 1; nff + nfb � 2):

6. Compute Q = (bS(k)n 
 Im)�, then estimate

h
(k) = (QT

Q)�1Q�:

7. Repeat (1)-(6) until jh(k) � h(k�1)j < � where � is a
prede�ned threshold.

Algorithm 3: Approximative LS III (ALS III)

We note that ALS II requires a priori knowledge of the
initial feedback vector sfb(0). As we shall show in the
simulation results, the impact of errors in sfb(0) can be
quite severe resulting in error propagation. To deal with
this problem, we �rst introduce the notion of time-reversal.
Speci�cally, we can write

Xnr = C(hr)Snr +Vnr (11)

where hr = [hL�1; hL�2; � � � ; h1; h0]
T and Snr and Xnr are

Toeplitz
matrices parametrized by ~xnr = [xn+P ; � � � ; xn+1; � � � ; xn]

T

and ~sn = [sn+P ; � � � ; sn�L�m+3; sn�L�m+2]
T , respectively.

Based on the observation the error propagation persist only
over a �nite period, we present next an improved version
of ALS II by incoporating time-reversal. The proposed
method is outlined as follows. Given an initial estimates of
h(0), an arbitrary sfb(0) and k = 0

1. Set k = k + 1.

2. Execute Step (2)-(6) of ALS II using h(k), s
(k)

fb (0) and
Xn.

3. Perform time-reversal to obtain h
(k)
r and S

(k)
nr . Initial-

ize

s
(k)

fb (0) = f(sr0
(k)

; nff � 1; nff + nfb � 2) (12)

where sr0
(k) is the �rst column of the estimated symbol

matrix S
(k)
nr .

4. Execute Step (2)-(6) of ALS II using h
(k)
r , s

(k)

fb (0) and
Xnr .

5. Perform time-reversal to obtain h(k) and S
(k)
n . Initial-

ize

s
(k)

fb (0) = f(s
(k)
0 ; nff � 1; nff + nfb � 2) (13)

where s
(k)

0 is the �rst column of the estimated symbol

matrix S
(k)
n .

6. Set k = k + 1

7. Repeat (1)-(5) until jh(k) � h(k�1)j < � where � is a
prede�ned threshold.

It can be easily seen by incorporating the time-reversal
mechanism, ALS III is not constrained by erroneous choice
of sff (0). The improved channel estimates and estimated
sff (0) will reinforce each other towards better estimates in
the next iteration.

Remarks

While ASL I appears to be more computationally expen-
sive, it can easily lend itself for e�cient parallel implementa-
tion. ASL II & III decision feedback structures can only
o�er limited parallelizm. Also h can be e�ciently com-
puted by exploiting the sparse nature of Q. The proposed
approach and methods can be readily extended for over-
sampled channel outputs to achieve robustness to sampling
phase.

Initial estimates of h play a critical role on the global
convergence of the methods proposed herein. From
our extensive simulations, we found by choosing h(k) =
[0; � � � ; 0; 1; 0; � � � ; 0]T , where the channel impulse response
peaks at the position of 1, the proposed methods can
achieve global convergence over a wide range of SNR and
for a variety of channels with high probability. To be truely

blind, bh and bSn that attain the lowest jXn�C(bh)bSnjF are
chosen over L candidates of h(0). This is somewhat brute
force and more e�cient approaches are currently being in-
vestigated [7].

Alternatively, relatively good estimates of the `shape' of
the channel can be obtained from using very short training
sequence, which can be used as h(0) for the methods pro-
posed in this paper. Performance analysis of this approach
is currently carried out [7].

4.. SIMULATION RESULTS

We consider a dispersive channel modelled by a 3-tap FIR
�lter with h = [0:4079; 0:8168; 0:4079]T . The transmitted
symbols are an i.i.d. sequence of f�1; 1g. All the results are
averaged from 500 independent trials. Fig 1 compares the

performance of ALS I, II&III over a range of SNR. s
(k)

fb (0)
is assumed to be known exactly. It su�ces to note that
ALS III performs better than the other two algorithms.
The relative computational load of direct search using (6),
ALS I,II& III in this simulation example is 1612 : 16 : 1.
Fig. 2 depicts the performance of the proposed methods
for various symbol sequence length. Fig. 3 compare the

performance of ALS II & III where s
(k)

fb (0) is not known
exactly. The equalizer order is �xed at m = 4. Clearly

ALS III achieve good performance with unknown s
(k)

fb (0).
Note that most of the performance curves follow the maxi-
mum likelihood estimates of h using known data sequence
very closely and convergence is achieved typically in < 4
iterations.

5.. CONCLUDING REMARKS

In this paper, we propose three original fast blind channel
identi�cation and equalization methods that only use chan-
nel outputs sampled at symbol rate. While only real-valued
parameters are considered here, extensions to complex-
valued channel impulse response and higher order modula-
tion schemes are straight forward. Simulation results have
demonstrated them to achieve reliable blind channel iden-
ti�cation with short sequences over a wide range of SNR.
This demonstrates the proposed fast converging and data
e�cient blind channel identi�cation and equalization meth-
ods to have potential for applications in mobile communi-
cations.
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