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ABSTRACT

The noise predictive structure of DFE is attractive for

the equalization of the coded modulation signals. In this

paper, a blind predictive constant modulus (CM) decision

feedback equalizer (PCM-DFE) is presented and analyzed.

The PCM-DFE employs the CM linear equalizer as its for-

ward �lter and a feedback �lter that optimizes the CM

cost of the decision variable. It is shown that for any �xed

forward �lter with reasonable small residue intersymbol

interference, the CM cost function for the feedback �lter

is approximately convex and its global minimum can be

approximated in closed form. We demonstrate that the

convergence rate of the feedback �lter is similar to the

least mean square (LMS) algorithm used in the nonblind

design. We show that the PCM-DFE performs better than

the nonblind linear MMSE equalizer in simulations.

1. INTRODUCTION

The importance of using the decision feedback equaliza-

tion was highlighted in the seminal paper by Price [10]

who showed that with the decision feedback equalization,

the additional SNR required to achieve channel capacity

is independent of the channel spectrum. Since the publi-

cation of [1] by Austin, the design of DFE with training

signals or when the channel is known is well understood.

However, there are applications where it is desirable that

DFE can be designed \blindly", i.e., without having the

access to the training signal.

Two design criteria are commonly used in blind DFE.

The decision directed (DD) approach minimizes the MSE

between the decision variable and detected symbols. Un-

fortunately, DD is known to have undesired local minima

[8, 6], and e�ects of error propagation may be catastrophic.

The DFE can also be designed based on the constant mod-

ulus (CM) criterion. The CMA-DFE and its variations in-

troduced in [5, 7, 9, 3, 2] are distinct alternatives to DD.
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Similar to CMA applied to linear equalization, the existing

CMA-DFE illustrated in Figure 1 minimizes the CM cost

of the decision variable:

fFc(z);Bc(z)g = arg min
F (z);B(z)

E(jykj
2
� rp)

2
: (1)

Although using the constant modulus criterion above to

design both the forward �lter F (z) and the feedback �lter

B(z)� 1 at the same time often gives satisfactory perfor-

mance, such a design criterion has a aw that may cause

problem in its application. Speci�cally, one can achieve

global minimum by setting F (z) = 0 and B(z) = 1 + z�k

for some integer k. Although this problem may be cir-

cumvented by imposing some forms of constraints on the

forward �lter as shown in [9], it is not clear whether such

types of DFE will perform better than its linear counter

parts.
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Figure 1: Schematic of CMA-DFE

In this paper, we investigate the predictive constant mod-

ulus decision-feedback equalization proposed in [12] where

it was shown that the MMSE-DFE can be closely approxi-

mated by a linear CM equalizer as the forward �lter and a

feedback �lter obtained by either the spectral factorization

of the received signal, or the constant modulus algorithm.

Derived from the MMSE (noise) predictive DFE, the new

approach avoids the complications of using CM criterion

(1). Perhaps more importantly, the predictive DFE struc-

ture is more suitable for trellis-coded signals [4].

We focus our attention to the design of PCM-DFE by

using the constant modulus cost for both the forward and

feedback �lters. Such an approach has clear computational



+

B(D)� 1

ŝk
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Figure 2: The Predictive structure of DFE

advantage over the spectral factorization approach. We

prove that, if the forward �lter (designed by any crite-

rion) provides a reasonable compensation to ISI, the con-

vergence of feedback �lter is global and it can be obtained

analytically. We demonstrate further that the convergence

property for the feedback �lter designed by CMA is almost

the same as that using LMS algorithm with training. The

bene�t of using DFE is illustrated by simulation where the

existing and the new blind DFE perform signi�cantly bet-

ter than the non-blind linear MMSE equalizer.

Model and Assumptions

We consider a discrete-time baseband model

xt =
X
k

hkst�k + nt; (2)

where fstg, fntg and fxtg are sequences of the source, the

noise and the received signal. The impulse response of the

composite channel fhkg includes the propagation channel,

the transmitter and receiver front-end �lters.

We make the usual assumptions: (A1) fskg is BPSK

signal with zero mean, i.i.d., and unit variance; (A2) fnkg

is zero mean, i.i.d., Gaussian with variance �2 , and is

independent of fskg; (A3) fhkg has a stable inverse. (A4)

The detected symbols are correct in all the DFE schemes.

2. THE PREDICTIVE CM DFE

The predictive DFE shown in Figure 2 consists of a linear

equalizer as its forward �lter. The estimation error �k of

the linear equalizer output is obtained using the detected

symbols ŝk, and is �ltered by the feedback �lter to provide

increase of SNR at the decision variable yk. A geometrical

explanation of this structure is given in [12].

It can be shown that when the forward �lter is imple-

mented using IIR �lters, the MMSE-DFE implemented by

the predictive structure is equivalent to that using the

standard structure shown in Figure 1. The forward �l-

ter Fm(D) is a MMSE linear equalizer and Bm(D)� 1 is

an optimal linear predictor that can be obtained using the

spectral factorization of the received process.

The predictive MMSE-DFE immediately suggests the

use of CM cost. Shown in Figure 3, the predictive CM-DFE

has essentially the same structure of the predictive MMSE-

DFE. Similar to the predictive MMSE-DFE, the forward

and feedback �lters are designed separately. Note that

Constant Modulus equalization has an arbitrary constant

phase ambiguity, i.e., the output of the CM equalizer is an

estimate of the source symbol with an unknown rotation.

In order to use detected symbols in the estimation, it is

necessary to compensate the phase ambiguity such that

the output CM equalizer has the same constellation as the

source symbols�.
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Figure 3: The Predictive CM-DFE

The CM Forward Filter

The design of the forward �lter is based on a recent result

[13] that establishes the connection between the constant

modulus equalizer and the MMSE equalizer. It is shown

that in the immediate neighborhood of the MMSE equal-

izer, there is a constant modulus equalizer, a fact that has

been observed in simulations by many including Godard

in his original paper. In light of this result, it was shown

that the constant modulus fc equalizer is approximately a

scaled version of the MMSE equalizer fm [12]:

fc = (1�
3

2
E)fm + O(E3); (3)

where E is the MSE of the optimal MMSE linear equal-

izer. The extra MSE of the CM equalizer over the MMSE

equalizer is given by 9
4
E2 +O(E6).

The CM Feedback Filter

There are two basic approaches to designing the feedback

�lter. We shall consider the more practical one that uses

the constant modulus criterion:

Bc(D) = arg min
B(D)

E(jykj
2
� 1)2: (4)

While it is not immediately clear why such a criterion is

legitimate, it turns out that not only this criterion is easy

to implement, at high SNR, it is also optimal in the sense

of minimizing the MSE at yk. We show in the following

analysis that, at high SNR, the design of the feedback �l-

ter based on the constant modulus cost function does not

have the problem of local minima. Further, the stochas-

tic gradient implementation of (4) converges as fast as the

�Note that this does not mean that the phase ambiguity has

to be eliminated completely. For example, if QPSK is used, the

phase ambiguity is reduced to multiples of �
2



(nonblind) LMS update of the feedback �lter when training

is available. At low SNR, however, this approach may be

a�ected by detection error propagation and the existence

of local minima.

3. CONVERGENCE ANALYSIS

For the predictive DFE, the design of forward and feedback

�lters are done separately. The convergence analysis of

the forward �lter is di�cult, and few results are available.

The analysis of the feedback �lter, which is the focus of

this section, turns out to be much simpler and relatively

strong results can be obtained. In what follows, we assume

that the forward �lter has been obtained in some way not

necessarily through the constant modulus criterion.

Consider the predictive constant modulus DFE shown in

Figure 2 with the �xed forward �lter Fc(D), e.g.,. a CMA

linear equalizer. Let q = [qk] $ Q(D)
�
= Fc(D)H(D) be

the equalized channel, and �q = [�qk] $ �Q(D)
�
= Q(D) � 1

be the residue interference. With the standard assumption

that detected symbols are correct, we have the following

system equations

wk = sk + (Q(D)� 1)| {z }
�Q(D)

sk + Fc(D)nk (5)

�k = wk � ŝk = �Q(D)sk + Fc(D)nk (6)

yk = wk + (B(D)� 1)�k (7)

= sk +B(D)(F (D)nk + �Q(D)sk): (8)

The design of the feedback �lter B(D)� 1 should be such

that the power of B(D)(F (D)nk + �Q(D)sk) is minimized.

We investigate next the relationship between the CM feed-

back �lter Bc(D) � 1 obtained from (4) and the MMSE

feedback �lter Bm(D) � 1. Unlike in [12], we do not as-

sume that the forward �lter has completely eliminated ISI.

It can be shown that the CM cost function for the design

of the feedback �lter b is given by

Jc(b) = 3jjbjj4R+ 4jjbjj2R+ 12btgjjbjj2R

+8btg+ 12(btg)2 � 2jjpjj44+ 2; (9)

where R is the covariance matrix of �k, is the impulse

response of the transfer function P (D) between the source

and the decision variable, g is the anti-causal part of �qk,

i.e., gk = �qku�k and uk is the unit step function. For a

reasonable design of the forward �lter, �qk should be small.

It can be shown that

Jc(b) = 3jjbjj4R+4jjbjj2R+12btgjjbjj2R+O(jj�qjj3) (10)

In the following analysis, we shall ignore O(jj�qjj3).

De�ne

b =

�
1

b1

�
;R =

�
r0 rt1

r1 R1

�
;g = ( g0 g1 ) (11)

we have

b
t
Rb = r0 + 2b

t
1r1 + b

t
1R1b1: (12)

Let b1 = �R
�1
r1| {z }

b1o

+�b1o, we have

b
t
Rb = r0 � r

t
1R

�1
1 r1| {z }

Em

+�bt1oR1�b1o (13)

Now let R1 have SVD R1 = U�2
U
t, and de�ne

� = �Ut�b1o; 0 = g0 + b
t
1og1;  = ��1

U
t
g; (14)

we have

b
t
Rb = Em + jj�jj

2
; b

t
g = 0 + 

t
� (15)

Substituting the above into (10), we have

Jc(�) = 3(Em + jj�jj
2)2 + 4(Em + jj�jj

2)

+12(0 + 
t
�)(Em + jj�jj

2) (16)

We show next that under mild conditions on the forward

�lter, the convergence of the feedback �lter is global.

Theorem 1 For a given forward �lter, if

jjjj
2
�
Em + 20 +

2
3

3
; (17)

then the CM cost function is convex with global minimum

�c = � where � is the real root of

jjjj
2
�
3 + 3jjjj2�2 + (Em + 20 +

2

3
)�+ Em = 0: (18)

The extra mean square error of the decision variable yk is

given by �2jjjj2.

4. SIMULATIONS

In this simulation, we examine two issues. First, can the

predictive CMA-DFE perform better than the linear CMA

and linear MMSE? Second, what is the convergence prop-

erty of the feedback �lter?

The channel considered in our simulation is the channel

b from [11, page 616], which has a spectral null. The DFE

has 32 forward taps and 2 feedback taps.

4.1. BER Performance

In applying the PCM-DFE, 100,000 symbols are used in

which 50,000 data samples are used to update the forward

CMA �lter �rst and the rest of data are used to update

both �lters. Figure 4 shows the BER performance com-

parison with nonblind MMSE, MMSE-DFE and blind lin-

ear equalizer CMA. We observe that while the PCM-DFE

performs better than the two linear equalizers, it has a

considerable gap between the optimal MMSE-DFE. One

reason is that the convergence rate of CMA for the for-

ward �lter is poor for this channel. We have veri�ed that



when the true CM cost function is used, with consider-

able iterations, a center spike initialization will lead to the

minimum very close to the MMSE equalizer, in which case

the gap between the PCM-DFE and the MMSE-DFE will

vanish. We also observed that, for this channel, the direct

implementation of CMA-DFE presented in [9] appear to

have better performance over the PCM-DFE.

MMSE    

MMSE−DFE

CMA     

PCM−DFE 

6 8 10 12 14 16 18
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR

S
E

R

Figure 4: BER Performance

4.2. Convergence of the Feedback Filter

It is interesting to examine the convergence of the feedback

�lter. Analysis suggests that, at high SNR, CMA updates

should perform in a similar way as the non-blind LMS algo-

rithm. This is con�rmed at SNR=30dB in Figure 5 where

both CMA and non-blind LMS converge to the optimal

feedback �lter. The contour of the true CM cost function

indicates the convexity of the cost as proved in Theorem 1

for the approximated cost function. The optimal feedback

�lter bo = [0:7487;�0:1391] is marked by an across that

appears to be close to the minimum of the true CM cost

function. Marked as a circle is the solution obtained from

equation (11) and (12) bc = [0:7097;�0:1316]. The extra

MSE of the PCM-DFE is 2:3� 10�4:
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Figure 5: SNR=30dB.
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