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ABSTRACT

Our contribution addresses the identi�cation of multiple
convolutive FIR channels. Many recently proposed blind
techniques su�er from the imperfect knowledge of the chan-
nel order. Meanwhile the major part of the existing com-
munication systems requires periodically transmitted refer-
ence sequences known at the reception site. This informa-
tion can be used to ensure the robustness the existing blind
approaches. We consider here joint utilization of the refer-
enced snapshots with the non-referenced data and construct
a combined estimator originating from the blind subspace
based technique applied to the Single Input Multiple Out-
put (SIMO) systems identi�cation. The statistical e�ciency
analysis and numerical examples are presented.

1. INTRODUCTION

The problem of multiple �lters deconvolution typically
appears in digital communication where the transmitted
signal is subject to the multipath propagation resulting in
the severe inter-symbol interference (ISI). The classical ap-
proach is based on sending reference sequences periodically
alterating the useful message and utilized for the channel
acquisition and further signal extraction. A certain num-
ber of recently proposed blind methods [1]-[5] exploits the
non-referenced observation. In particular several second or-
der techniques [6]-[9] are based on multi-sensor reception or
fractionally spaced observation both leading to the SIMO
convolutive model identi�able from the second order statis-
tics of the observed signals. Quite often the success of these
methods is owing to the perfect knowledge of the channel or-
der as well as good inter-channel disparity. However most of
the existing communication systems still require some refer-
ence signals for various operational purposes (e.g. modem
synchronization). These sequences may be usually done
much shorter than the data necessary for the channel ac-
quisition. Such an auxiliary information can be also used
to enhance the blind identi�cation techniques based on the
non-referenced observation.
In this contribution we derive a combined estimator based

on the blind subspace based criterion [8] recently analyzed
in [10], [11]. Such choice of the blind technique is motivated
by certain asymptotic properties of the subspace based ap-
proach. The related statistical result is discussed later in
this paper.
The advantage of semi-blind identi�cation techniques

with respect to its purely blind counterparts within the high
capacity communication systems depends on the possibility
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to operate with relatively short reference sequences. We
focus on the case when the information data length essen-
tially exceeds the duration of the reference sequence. Some
analytic results presented in the article may be helpful in
choosing these parameters. We �nally o�er the numerical
validation of our conclusions.

2. DATA MODEL

Let an M -variate times series fy (t)g
t2ZZ

represent a
baseband noisy output ofM antennas while the transmitted
scalar series fs (t)g

t2ZZ
is subject to multipath propagation:

y(t) = x(t) + b(t); x(t) =

LX
�=0

h(�) s(t� �); t 2 ZZ: (1)

Here the set of M � 1 vectors h(� ), � = 0; : : : ; L de�nes
the overall channel impulse response. The associated mul-
tivariate transfer function is conventionally given by h(z) =PL

�=0
h(� ) z�� , where [h(z)]p stands for the scalar transfer

function to the p-th output. The objective is to construct
the estimator of h(z) based on the observation fy (t)gt2ZZ
and partially known input signal. We specify the two sepa-

rate observation sets: YTr
4

= [y(t0 + Tr � 1)T ; : : : ; y(t0)
T ]T

and YT
4

= [y(t1+T �1)T ; : : : ; y(t1)
T ]T associated with the

input data sets STr
4

= [s(t0 + Tr � 1); : : : ; s(t0 � L)]T and

ST
4

= [s(t1 + T � 1); : : : ; s(t1 � L)]T correspondingly. Here
YT is non-referenced data with unknown inputs while YTr
corresponds to the referenced signal i.e. the entries of STr
are known. We also assume for simplicity that ST and STr
do not overlap and rely upon the following hypotheses:

H1 The number of outputs M is strictly greater than one.

H2 The input signal fs (t)g
t2ZZ

is a zero-mean complex
forth-order stationary process with the unknown power
spectral density % (!).

H3 The additive noise fb (t)g
t2ZZ

is spatially and tempo-
rally white complex circular Gaussian zero-mean sta-
tionary process of power �.

Note that the latter assumption may be relaxed to the
case of spatially colored noise with the known covariance
structure since preliminary spatial prewhitening leads back
to the hypothesis (H3). We now propose a brief review of
the referenced and blind identi�cation techniques.

3. REFERENCED AND BLIND TECHNIQUES

Let us �rst consider the referenced data YTr . This
vector can be written as YTr = XTr + BTr , where
XTr = [x(t0+Tr�1)T ; : : : ; x(t0)T ]T and BTr = [b(t0+Tr�
1)T ; : : : ; b(t0)

T ]T . The convolution (1) may be rewritten in



the algebraic form using the properties of Hankel matrix.
Let us denote h = [h(0)T ; : : : ;h(L)T ; 01�M(L0�L)]

T the
vector of channel coe�cients, here L0 represents the vir-
tual channel order i.e. the result of order determination or
any su�ciently large value involved in estimation. Then
XTr = HL0(STr )h with HL0(STr ) given by2
4 s(t0 + Tr � 1) s(t0 + Tr � 2) : : : s(t0 + Tr � L0 � 1)

s(t0 + Tr � 2) s(t0 + Tr � 3) : : : s(t0 + Tr � L0 � 2)

.

.

. p

p

p

p

p

p .
.
.

s(t0 + L0) s(t0 + L0 � 1) : : : s(t0)

3
5
 IM ;

a block Hankel matrix of the input data with each block
proportional to the identity matrix (here (
) denotes Kro-
necker product) and L0 � L. According to the classi-
cal results [12]-[13], the assumption (H3) yields a sim-
ple minimum variance estimate of h from YTr given by

the quadratic minimizer ĥr = argmingQr(YTr ; STr ; g),

where g 2 CM(L0+1) and

Qr(YTr ; STr ; g) = kYTr �HL0(STr )g k
2
: (2)

The problem of �nding the statistically optimal solution is
much more complicated in the blind context. Many recently
proposed simpli�ed approaches are based on the second-
order analysis of the noise-free space-time covariance matrix

of �nite order N : R̂N = (T � N)�1
PT

t=N
YN(t)YN (t)

H ,

where YN(t)
4

= [y(t)T ; : : : ; y(t�N)T ]T is (stacked) space-
time observation. In particular the noise subspace (NS)
method [8] is based on unique correspondence between
the cannel h(z) and dominant (signal) subspace of RN =

IEfR̂Ng. Indeed, model (1) may be written in the al-

gebraic form YN(t) = TN (h)SN (t) + BT , where SN
4

=

[s(t)T ; : : : ; s(t�N �L)T ]T , BN
4

= [b(t)T ; : : : ; b(t�N)T ]T

and Sylvester resultant matrix

TN (h) =

"
h(0) : : : h(L) 0 0

0
.. .

. . . 0
0 0 h(0) : : : h(L)

#
; (3)

is a block Toeplitz matrix associated to the polynomial h(z)
of (virtual) degree L0 and composed of N + 1 vertical and
N + L0 + 1 horizontal M � 1 blocks. Clearly the signal
subspace of RN coincides with spanf TN(h) g. As shown
in [11],[14],[15], under the condition N � L we have

span f TN (g) g = span f TN (h) g , g(z) = h(z)�(z); (4)

here g(z) is M � 1 polynomial vector and �(z) is a scalar
polynomial. Denote �N the orthogonal projector onto
the orthogonal (noise) subspace of RN . According to (4),
�N TN(g) = 0 implies g(z) = h(z)�(z). If the true order
is known (e.g. it is possible to choose L0 = L ), one can
check that g(z) and h(z) coincide up to a scalar constant
factor i.e. the true channel is identi�able up to scale. In
the original version [8] the empirical channel is found as

ĥNS = argminkgk=1
� �̂N TN(g)


F

	
, where �̂N is the

empirical noise subspace projector conventionally obtained
from R̂N . The authors of [10], [11] propose to consider
more general class of weighted estimators obtained via re-
placing quadratic form k �̂N TN (g) kF by k �̂N TN (g) kW ,
where W is the non-negative matrix providing the mini-
mal asymptotic error variance. Numerical implementation
of this estimator requires minor revisions of ĥNS. First of

all partition matrix �N in M(N + 1)�M blocks: �N =
[�N (0); : : : ;�N (N)] and construct anM(N+1)�M poly-

nomial matrix �N (z)
4

=
PN

�=0
�N (� ) z

�� . We adopt the

same notation for �̂N . Now associate to any �nite order
polynomial P (z) =

Pn

�=0
P(�) z�� the block-wise trans-

posed Sylvester matrix of order N : BN (P )
4

= TN (PH )H ,
where PH (z)

4

=
Pn

�=0
P(�)H z�� . One can check that

vec
�
�̂N TN (g)

	
= BL(�̂N)g, where vec f:g is a column

vectorization operation: vec fPg 4

= [PT1 ; : : : ;P
T

q ]
T for any

p� q matrix P. The weighted quadratic criterion may be
written as ĥW = argminkgk=1QW ( R̂N ; g), where

QW ( R̂N ; g) = g
H BL(�̂N)

H
W BL(�̂N)g: (5)

Here notation QW ( R̂N ; g) underlines that ĥW is a func-
tion of the empirical second order statistics of fy (t)g

t2ZZ
.

As a matter of fact, minimization problem (5) yields some-

how scaled true channel ĥW = �h in the noise-free case,
this opportunity owing to the perfect subspace identi�abil-
ity i.e. spanf R̂N g = span f TN (h) g if � = 0. However
the described estimator looses its consistency once the chan-
nel order is overestimated e.g. L0 > L. Indeed according to

(4) we have ĥW (z) = �(z)h(z) where �(z) is an arbitrary
scalar polynomial of degree L0�L. In the following section
we discuss how the problem can be treated in the semi-blind
context.

4. SEMI-BLIND IDENTIFICATION

A straightforward fusion of the reference-based (2) and
blind (5) cost functions leads to a combined criterion:

ĥW = argmin
g

�
Qr(YTr ; STr ; g) + T QW ( R̂N ; g)

	
; (6)

here W is some non-negative de�nite matrix bounded uni-
formly over the possible values of T . The attenuation T is
introduced to balance the information contributed by the
the referenced and blind data. The quadratic form in (6)
may be regarded as a pseudo-likelihood function obtained
by modifying the likelihood function of the blind data. No-
tice that the column space of BL0(�N)

H W , should coincide
with that of BL0(�N)

H , otherwise the blind contribution
of (6) has spurious minima g 6= h, W BL0(�N)g = 0.

Hence we adopt only the admissible weightings: W 4

=�
W � 0 : spanf BL0 (�N)

HW g = spanf BL0(�N)
H g

	
, see

[15]. The problem (6) yields a closed-form solution

ĥW =
�
Tr IIr + T BL0(�̂N)

H
WBL0(�̂N)

��1HL0(STr )
H
YTr :

here IIr = Tr
�1HL0(STr )

H HL0(STr ) is the autocorre-
lation matrix of the reference sequence. The solution
of purely referenced problem appears to be a particu-

lar case: ĥr = HL0(STr )
#YTr hence according to (H3),

IE
�
(ĥr � h) (ĥr � h)H

	
= Tr

�1 � II�1r . Maximization of
this quantity clearly requires that IIr = IL0+1. Note that
such choice is often used in the actual systems, see [16]. We
assume for simplicity IIr = IL0+1. Unlike most of blind
techniques, our method also treats the case of the non-
prime channels e.g. when h(z) = 0 on some �nite set.
Let us specify h(z) = �h(z) "(z), where �h(z) 6= 0 has de-

gree Lo � L and "(z) =
PL0�Lo

�=0
�(� ) z�� , de�ne also

� = [ �(0); : : : ; �(L0 �Lo) ]. The following asymptotic state-
ment holds at Tr � T .



Theorem 1 Assume that (H1) - (H3) hold. Then the es-
timate (6) is asymptotically (Tr; T ! 1 ) Gaussian with

ĥW (z) =
PL0

�=0
ĥW (�) z�� verifying ĥW (z) = �h(z) "̂(z) +

�ĥW (z), �ĥW (z) =
PL0

�=0
�ĥW (�) z�� , scalar "̂(z) =PL0�Lo

�=0
�̂(�) z�� , here �̂ = [ �̂(0); : : : ; �̂(L0 � Lo) ] and

�ĥW = [�ĥW (0)T ; : : : ; �ĥW (L0)T ]T are independent:

p
Tr(�̂� �)

d! Nc(0;��); lim
T!1

T IEf�ĥW�ĥW
H g =�(W )

h ;

�� = �
�
BL0�Lo(�h)

HBL0�Lo(�h)
��1

; �
(W )

h = ��
(W )

N :

�N

4

= limT!1
T
�
IEfBL0(�̂N ��N)hh

H BL0(�̂N��N )
Hg,

de�ne W = (�N +  I )�1;  � 0. Then there exists a

lower bound �N :

�
(W )

N ��N 8 W 2 W; lim
!0
�

(W )

N =�N :

Analytic expressions for�
(W )

N and�N are omitted because
of space limitations. The essential conclusion of theorem 1
is that the estimation error consists of two contributions
(e.g. �h(z) ("̂(z)�"(z)) and �ĥW (z)) converging at di�erent
rates. Moreover, the weighting choice a�ects only the "most

convergent\ part �ĥW (z). Actually the optimal solution
requires the consistent estimate of �N which is available
only if the true order is known. In most of cases with L0 >
L, the plain weighting W = I yields rather good results
even compared to the optimally weighted technique (i.e.
calculated for the true order). Clearly the choice of W is
not critical if L0 > L. Indeed the total performance is
dominated by the relatively slow convergence of "̂(z). Let
us focuse on the regular case characterized by the known
order and inter-channel disparity (e.g. L0 = Lo = L) :

ĥW (z) = h(z) �̂+ �ĥW (z); �̂
d! 1: (7)

Note that imperfect knowledge of the scale factor �̂ is
fairly important for the signal extraction provided that

ĥW (z)
p! h(z). Hence the actual performance is fully de-

termined by �
(W )

N . The optimal weighting presented in
theorem 1 is consistent in this case and shown equivalent to
W = (�N)

#, thus the lower bound �N is asymptotically
achievable. This bound admits a close-form approximation
for the large values of the analyzed order N .

Corollary 1.1 Assume the conditions of theorem 1 and
L0 = Lo = L. Then

lim
N!1

(�N)
# =

1

2�

Z �

��

% (!)

1 + �[% (!)h(e{!)Hh(e{!)]�1

�
�
EL(e

{!)EL(e
{!)H

�

�(e{!) d!;

here �(e{!) is the projector onto nullf h(e{!) g.
Note that the performance of (6) in the regular case is de-
termined by the unreferenced data length T i.e. the �-
nite estimation accuracy of the second order statistics R̂N .
However it is also important to how "good\ the second order
information is exploited i.e. establish the relative e�ciency
of (6) within the class of second order techniques. Actually
the second order asymptotic e�ciency might be reached
in the blind case using the covariance matching technique,
[17]. However the algorithmic solution of this technique
yields rather complex numerical implementation. We study
here the asymptotic lower bound achievable in the regular
case due to simultaneous use of the referenced data YTr and

the empirical second order statistics R̂N .

Theorem 2 Assume that the conditions of corollary 1.1

hold and ĥF = F(YTr ; R̂N ) a consistent estimator of h.

Then ĥF(z)
4

=
PL

�=0
ĥF(�) z

�� , ĥF(z) = h(z) �̂F+�ĥF(z)

with �̂F
d! 1, here �ĥF(z)

4

=
PL

�=0
�ĥF(�) z

�� such that

�ĥF = [�ĥF(0)
T ; : : : ;�ĥF(L)

T ]T veri�es

lim
T;N!1

T IE
n
�ĥF �ĥF

H
o
� ��N :

Consequently (6) is an asymptotic minimum variance semi-
blind second order estimator. Actually the results of corol-
lary 1.1 and theorem 2 also hold in the blind context i.e. for
Tr = 0 (Qr(:) � 0 ) and the family of consistent estimators

ĥG = G(R̂N ). Note that the second order optimality only
holds when % (!) is unknown i.e. the empirical knowledge
of signal subspace spanf h(e{!) g is the only statistical in-
formation about h(z). More comprehensive analysis of this
question is deferred to a regular publication.
One should notice that most of the statistical inference in

this paper is asymptotic in T and Tr. Meanwhile possibil-
ity to operate with relatively short training sequences is of
particular importance for the high capacity communication
systems. The following statement provides a statistical de-
scription of the proposed technique at �nite length reference
sequences though (in�nitely) long unreferenced observation.

Theorem 3 Let ĥW be obtained via (6) at some W 2 W.

The empirical transfer function ĥW (z) =
PL0

�=0
ĥW (�) z��

veri�es limT!1 ĥW (z) = �h(z) "̂(z) with scalar "̂(z) =PL0�Lo

�=0
�̂(� ) z�� . Denote �̂ = [�̂(0); : : : ; �̂(L0 � Lo)], then

�̂ � Nc(�;��); �� =
�

Tr
[BL0�Lo(�h)

H BL0�Lo(�h)]
�1
:

Apparently the distribution of ĥW at short reference se-
quences and T ! 1 matches the asymptotic result. It
is quite easy to show that the distribution of �̂ yields

limT!1 IEf�ĥW �ĥW
H

g = Tr
�1� Ph where Ph stands for

the orthogonal projector onto spanf BL0�Lo(�h) g. Hence
at moderate over-modeling and reasonable inter-channel
disparity (e.g. L0 � Lo is small), our approach o�ers
certain improvement of the referenced one, remind that
IE
�
(ĥr � h) (ĥr � h)H

	
= Tr

�1 � IM(L0+1). The result of
theorem 3 also provides some general considerations about
the choice of the reference sequence length.

5. NUMERICAL STUDY

According to the standard baseband representation
fx (t)g

t2ZZ
is modeled as the output of the M = 4 identical

half-wavelenght spaced antennas receiving several modes of
the transmitted message delayed by the multiples of the
Nyquist period. Each propagation path is de�ned by the
slightly perturbed plane wave with the wavenumber #� ,
� = 0; : : : ; L. and common spatial correlation factor � =
0:99. These propagation modes are independently driven
by the multivariate circular Gaussian distribution with the

covariance matrix IEfhp(�)hq(� )g = �jp�qj e{(p�q)#� . The
observation process is contaminated by additive noise quan-
ti�ed here by the average signal-to-noise ratio per receiver:

SNR =
PL

�=0
kh(�)k2=(�M). The transmitted signal con-

sists of BPSK preamble coded by a binary Gold sequence
[18] of length Tr = 31 followed by the unknown data with
QAM-4 modulation. We further apply the semi-blind tech-
niques developed in this paper. The empirical channel



ĥ(z) is used to construct a causal channel inverse (zero-

forcing equalizer) êh(z): �̂(z) = êh(z)h(z)
p! 1, here

�̂(z) =
P

1

�=0
�̂(�) z�� , therefore �̂(0)

p! 1 and �̂(�)
p! 0,

� > 0. The residual deconvolution error (e.g. the residual

ISI )
P

1

�=1
j�̂(�)j2 is regarded here as a measure of the

estimation accuracy. Let us consider the environment with
�ve propagation modes (L = 4 ) having random direction
parameters #� uniformly spaced in (��; �). We �x the vir-
tual channel order L0 = L+2 and use the minimal analysis
window N = L0, see [8] for more details. The unreferenced
data length is chosen T = 300.
On Fig.1 the residual ISI (in dB) is plotted versus di�er-

ent values of SNR for various techniques. Here the solid line
and \-x-" stand for theoretical and simulated ammounts of
the residual ISI provided by the plain semi-blind estimator
(e.g. W = I ). All simulated quantities are averaged over
100 Monte-Carlo trails and plotted along with the 95% con-
�dence intervals obtained via the bootstrap method. Simi-
larly, dashed line and \-o-" depict theoretical and simulated
performances of the optimally weighted version of (6). Note
that the true order was exploited to calculate the optimal
weighting matrix i.e. any realistic implementation with the
imperfectly known order generally yields certain degrada-
tion. The dash-dotted line and \-*-" stand for theoreti-
cal and sample performances of the classical approach (2).
One can observe the essential advantage of semi-blind tech-
niques while the choice of weighting matrix is less impor-
tant in practice as well as in theory. On Fig.2 we compare
the plain and weighted estimators at di�erent values of the
virtual order and SNR equal to 20 dB. Apparently the rel-
ative degradation hardly exceeds 3dB even at rather severe
over-modeling. Notice also that the plain estimator is of-
ten better than its asymptotically optimal adverse at �nite
sample sizes.
We �nally study the accuracy bound stated in corol-

lary 1.1 by tracing the residual ISI versus the factor N ,
see Fig.3. This results were obtained at worse spatial di-
versity (#� 2 (�0:05�; 0:05�) ), the true channel order i.e.
L0 = L and the same value of SNR. The dash-dotted line
stands here for the residual error calculated from corol-
lary 1.1. Apparently the theoretical performance of the
optimal technique reaches the bound while the actual �-
nite sample performance is noticeably worse. Meanwhile
the plain estimator yields quite good accuracy.
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