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ABSTRACT

The problem of eliciting priors on the parameter space of

a signal hypothesis is considered in this paper, and two

lesser-known approaches are emphasized. Each yields con-
servative priors appropriate for data-dominated Bayesian

parameter inference. They are based, respectively, on the

principles of (i) a posteriori transformation invariance, and
(ii) a priori maximum entropy. Novel priors on a wide class

of signal models are deduced. Their ability to regularize in-

ference of the di�erence frequency between closely spaced
tones is considered, and they are compared with the Ock-

ham Prior which was studied in previous work.

1. INTRODUCTION

In the Bayesian approach, inferences concerning unknown
parameters are drawn from the a posteriori density, which

is formed, from Bayes' Theorem [1, 2], as the product of the

Likelihood Function (LF) and the prior. It is the problem
of assigning prior distributions in signal identi�cation which

is addressed in this paper. The prior not only quanti�es

any relevant information available before observations are
made, but it can also be used to modify inferences so that

they behave appropriately (Section 2.1).

The problem of prior elicitation remains the single most
contentious area in all of mathematical inference. Many

criteria have been proposed in the literature [1{7], some of
which have been used in Bayesian signal identi�cation:

(i) Bayes' Postulate: this states that a uniform prior

should be assigned when `no' prior information is avail-

able. Inferences are then drawn exclusively from the
LF.

(ii) Je�reys' Priors: � = � is a location parameter if the

LF has the form

p(x j �) = h(x� �):

In this case, Je�reys' Prior for � is uniform, as in (i).
� = � is a scale parameter if

p(x j �) =
1

�
h(
x

�
);

for which Je�reys' Prior is p(�) / 1=�. The former is

employed widely as the prior for `signal' parameters,

the latter as the prior on the standard deviation of the
additive `noise' [1, 5, 8].

(iii) Conjugate Priors: the prior, q(�), is conjugate to the
LF, p(x j �), if the resulting posterior, �(� j x), has the
same form as q(�). This property is useful in ensuring

tractability in problems of sequential inference [2].

The sequel de�nes the problem of assigning priors consis-

tently (i.e. \elicitation"), and presents two strategies which
are not widely known in the signal identi�cation literature.

2. PRIOR ELICITATION

Consider a parametric hypothesis, I, which seeks to explain

a set of observations, D = d 2 C
N

, in terms of a set of un-

known parameters, � = ��� 2 � � C
k

, where C denotes the
set of complex numbers, � is the space of ���, and notation

of the type `X = x' signi�es a realization, x, for the prob-
abilistic parameter (p.p.) [9] vector, X. d may be viewed

as a vector of N discrete samples from a random process.

The direct probability of d given candidate values of ���, i.e.
p(d j ���;I), may be interpreted as a function, l(��� j d;I), of
��� itself, being the Likelihood Function (LF). In this paper,

I additively decomposes d into a `signal', s = g(���), and
`noise', e:

d = g(���) + e; (1)

where

e � p
E
(e j I): (2)

`�' denotes `is distributed as', and g(�) is the sampled sig-

nal function, parameterized by ���. It will be assumed that

the analytical form of this function is known, so that the
signal identi�cation problem reduces to one of estimating

�. The framework is readily extended to the case of model

uncertainty [5, 9]. From (1,2), the LF is given by

p(d j ���;I) � l(��� j d;I) = p
E
(d� g(���) j I): (3)

Much of the orthodox signal identi�cation literature is based

on inferences from the LF. In contrast, the Bayesian ap-
proach recognizes that degrees of belief in a proposition

are quanti�ed by Probability. For example, the proposi-

tion that the (unknown) parameters, �, take on value ���|
i.e. `� = ���'|has a belief level given by p(��� j d;I) once d is

observed. This is the a posteriori (AP) pdf of � [1{3, 5].



Bayes' Rule inverts the direct probability (3) to yield the
required AP pdf:

p(��� j d;I) / p(d j ���;I)p(��� j I): (4)

p(��� j I) is the prior on �. Data-dominated (i.e. objective)

inference may be achieved using uniform or di�use priors,

as discussed in Section 1. Then, p(��� j d;I)
�

/ l(��� j d;I) from
(4), but this fails to regularize the inference, as discussed

next.

2.1. Prior Regularization

Normalizability of p
E
(�) (2) implies that p

E
(e j I) =

f(kek), where f(�) is monotonically decreasing and kek
denotes some norm of e. For example, the (complex)

Gaussian noise pdf|to be explored in this paper|is

p
E
(e j I) / exp

�
�eH��1e

�
, where eH��1e is a Maha-

lanobis norm. The Maximum Likelihood (ML) estimate,

from (3), is given by ���ML = arg :min��� kd� g(���)k. The cri-
terion may over�t d with g(�), particularly if k 6� N . This
manifests itself as thresholds in estimation and excessive

order in model selection [5, 9]. Prior regularization can be

accomplished via an appropriate non-uniform prior, to yield
a Maximum a Posteriori (MAP) criterion of the type

���MAP = arg :min
���

[kd� g(���)k+ �(���)] ; (5)

where �(���) is introduced via the prior (4). In tasks such
as image segmentation [10], for example, Markovian priors

may be adopted to encourage connectivity in the inferred la-

bel �eld. Two principles which yield novel regularizing pri-
ors for the signal identi�cation task (1) are now presented.

3. TRANSFORMATION INVARIANT

INFERENCE

Let h : � � C
k

! � � C
k

j � = h(���) be a complex, bijec-

tive, holomorphic transformation with continuous �rst par-
tial derivatives. The gradient matrix of the transformation

is denoted by r���(�
T ), whose determinant is assumed to

be non-zero, 8��� 2 �. Denoting the AP inference for � by
p(��� j d;I) (assumed positive 8���), then the inference for �

is [1, 3, 4]

q(� j d;I) =
1

jr���(�
T )j2

p
�
h
�1(�) j d;I

�
; (6)

where h�1(�) denotes the inverse transformation. The de-

terminant term, j�j, which is squared since the transforma-

tion is complex, is the hypervolume element expansion ratio

for h(�), and arises in (6) because of the normalization re-
quirement of probabilities.

One consequence of (6) is that Bayesian inferences|as

opposed to inferences based on non-measure functions such
as the LF [5]|are not, in general, invariant with respect to

a transformation. For example, the Maximum a Posteriori

(MAP) estimate will not satisfy �MAP = h(���MAP), which
is desirable. Thus, the MAP estimate of f in the signal

model sin(2�fn) will not be consistent with that of T in

sin (2�n=T ), under the transformation T = 1=f . However,
the following theorem, based on work by Je�reys [4], pro-

vides a su�cient condition for transformation invariance to
be met.

Theorem 1 Consider hypothesis I, which explains obser-

vations d 2 C
N

in terms of parameters � = ��� 2 � � C
k

,
via the LF, l(��� j d;I). Let � = h(���) belong to the transfor-

mation class de�ned above. Then AP inferences are invari-

ant with respect to h(�) if the following prior is used:

p(��� j I) / jJ(��� j I)j: (7)

J(��� j I) is the Fisher information matrix under I, whose

elements are

Jij(���jI) = �E���

�
@2 ln l(��� j d;I)

@�i@�j

�
1 � i; j � k: 2

(8)

� A proof is given in [7]. The mild regularity conditions

which must be met by l(��� j d;I) are given in [5].

� The appropriate invariance prior for real parameter

transformations is p(��� j I) / jJ(��� j I)j
1

2 .

3.1. Data-Translated Likelihood

If the LF can be expressed in the form

l(��� j d;I) = q [���(���)� f(d)] ; (9)

then it is data-translated [1] in the transformed space, �, of
���, since d in
uences only the location, and not the shape, of

the LF. While this property often holds in the single param-

eter case for asymptotically large samples, it is necessary to
weaken the de�nition in the multiparameter case to one of

hypervolume invariance of the LF. It has been shown [1]

that the prior (7) is consistent with the assignment of a
uniform prior in the space, �, where this hypervolume in-

variance is achieved. This confers another justi�cation for

choosing (7), though it is important to recognize the weak-
ness of this invariance constraint [4].

3.2. Prior Stochastic Independence

If � = (   T ; ���T )T , and stochastic independence between    

and ��� is to be imposed a priori, then the prior factorization

p(��� j k; l;I) / jJ1(   j k;I)jjJ2(��� j l;I)j (10)

secures AP invariance under the decoupled transformations

�1 = h1(   ), �2 = h2(���), where J1(   j k;I) is calculated
from l(   j ��� = k;d;I) via (8), and J2(��� j l;I) is calculated
from l(��� j    = l;d;I). k and l are the necessary hyperpa-

rameters of the prior [5].



4. INVARIANCE PRIOR FOR A WIDE

SIGNAL CLASS

Consider the hypothesis, I, which analyzes observations,
d[n], in terms of m basis functions, Gk [n;!!!], !!! 2 R

r

:

d[n] =

mX
k=1

bkGk[n;!!!] + e[n]; n = 0; : : : ;N � 1: (11)

bk are the linear coe�cients, and e[n] are the residuals

(`noise'). This rich class [5, 9, 11] embraces a wide range of

signal analysis techniques as special cases, including Fourier
and wavelet analyses, etc. Gathering the N observations

into vector-matrix form, then

d = s+ e = G(!!!)b+ e; (12)

where G(!!!) 2 C
N�m

with (n; k)th element Gk[n;!!!], and

e � N (0;�), being complex, zero-mean, Gaussian noise
with known covariance matrix � (see Section 2.1). From

(3,12):

l(!!!;b j d;�;I) / exp
�
�(d�Gb)H��1(d�Gb)

�
; (13)

where G �G(!!!) for convenience. From (7,8,13), matrix
calculus yields the following invariance prior for the signal

parameter space [5]:

p(!!!;bj�;I) /

��������������
<

2
666666664

b
H @G

H

@!i
�
�1 @G

@!j
b b

H @G
H

@!i
�
�1
G jb

H @G
H

@!i
�
�1
G

GH �
�1 @G

@!j
b GH��1 G jGH��1 G

�jGH �
�1 @G

@!j
b �jGH��1 G GH��1 G

3
777777775

��������������

1

2

: (14)

Certain submatrices above are represented by their (i; j)th

element, ith row or jth column as appropriate, for nota-

tional convenience. Techniques for marginalizing out �,
when it is unknown a priori, are described in [1, 5]. Useful

special cases include the following:

(i) If !!! and b are independent a priori, then, from (10) [5]:

p(!!!;b j�;k; I) /

����<
�
k
H @G

H

@!i
��1

@G

@!j
k

�����
1

2

; (15)

where the information matrix on the right is denoted by

its (i; j)th element.

(ii) If all !j and bk are independent, then, from (10) [5]:

p(!!!;b j�;k; l;I) /

"
rY
i=1

k
H @G

H

i

@!i
��1

@Gi

@!i
k

# 1

2

: (16)

Gi denotes G as a function of !i when all other !j are
held constant at scalar values which are gathered to-

gether in the hyperparameter vector, l, on the lefthand

side. Hence, (16) is a product of r scalar functions pa-
rameterized successively by !i, achieving the necessary

a priori independence.

5. AN ENTROPIC PRIOR FOR SIGNAL

IDENTIFICATION

The expected information (i.e. entropy)|in the Shannon
sense|gained upon observing � � p(��� j I) is given by

H
�
= �

Z
�
p(��� j I) ln [p(��� j I)]d��� (17)

(assuming Lebesgue measure on � [3, 5]). An intuitively ap-

pealing prior assignment strategy is to maximize (17) with
respect to p(��� j I), subject to any testable constraints on

�. This yields the minimum information prior [2, 5{7]. A

novel case is now described for the model structure (12).
From (12), the mean square value of the signal over the

observation window is T (!!!;b) = 1

N
bHGHGb, with ensem-

ble average over � given by

E [T (!!!;b)] = 

2
: (18)

E [�] is with respect to the prior p(!!!;b j I), and 
2, the
expected square value (i.e. `power'), is testable via an er-

godicity assumption. Lagrangian optimization of (17), con-

strained by (18), yields a density of the kind [5]

p(!!!;b j �;I) / exp
�
��bHGHGb

�
; (19)

where � is a Lagrange multiplier. Standard manipulations

yield � = m=N
2 [5].

� It has been shown [5, 11] that (19) is similar to the Ock-

ham Prior for the signal structure (12); i.e. it favours
objectively `simpler' models, thereby regularizing the

AP inference for !!! and b, in the sense explained by

(5);

� (19) may be generalized to the case where there is
testable information concerning signal autocorrelations

to lag N � 1, i.e.

E [ssH ] = C: (20)

s =Gb (12) and C 2 C
N�N

is the known Hermitian

correlation matrix for the signal. Maximization of

(17), constrained by (20), yields the following entropic
prior [5]:

p(!!!;b jC;I) / exp
�
�bHGHC

�1
Gb

�
: (21)

� Prior independence is not engendered by the priors

(19,21). If the second moments of b and !!! are available
independently a priori, then conventional independent

Gaussian priors are obtained on the spaces, B and W,

of b and !!! respectively, using the procedure above [5].



6. SUPERRESOLUTION OF CLOSELY

SPACED FREQUENCIES

Consider the classic problem of inferring the di�erence fre-
quency, !, in the following signal model:

d[n] = e
j!1n

�
b1 + b2e

j!n�
+ e[n]; n = 0; : : : ;N � 1;

(22)

where E[n] = e[n] � N (0; �2), 8 n. !1 is known a priori

and b1, b2 and ! are to be inferred. In the sequel, marginal
a priori densities for !,

p(! j x;I) =

Z
B
p(!;b j x; I)db;

are compared, where x denotes any necessary hyperparam-
eters, and the integrand on the right is the joint parameter

prior which will be assigned using the strategies outlined in

this paper.

6.1. Invariance Prior

Assuming ! and b are independent a priori, then, from (15)

or (16), p(! j �;k; I) / p(!;b j �;k; I) (assuming a range

constraint on b). Substituting (22) (via (11) and (12)) into
(15) or (16), noting that !!! = ! (a scalar) in this case, and

letting � = �2IN (i.e. diagonal), then p(! j �;k; I) / const.

(see Fig. 1). In the Figure, one DFT bin is de�ned to be
2�=N rads/sample. If independence is relaxed a priori, then

(14) must be employed, yielding a prior which is also illus-

trated in Fig. 1. It behaves similarly to the one proposed
in [12], being approximately uniform for ! > 1 DFT bin,

and small for ! < 1 bin, thereby eliminating the possibility

of model rank de�ciency a priori.

6.2. Entropic Prior

From (19), the marginal entropic prior for ! is [5]

p(! j �;I) =

Z
B
p(!;b j �;I)db / jGHGj�1

=
�
N
2 � sin2

�
N!

2

�
= sin2

�
!

2

���1
; (23)

assuming B = C
m

. This is also plotted in Fig. 1. As

a regularizing prior, it outperforms the others; i.e. it is
large for ! < 1 bin, and has minima at integer DFT bins,

! = k2�=N , k 2 Z
+
(i.e. where the basis functions of (22)

are orthogonal [5]). As such, this prior engenders Ockham

characteristics in the inference: if data support for the hy-
pothesis (22) is insu�cient, (23) dominates the AP infer-

ence, p(! j d; �;I), because of the singularity at ! = 0, and

this encourages the rejection of the hypothesis. If data sup-
port is su�cient, the LF will dominate the prior (23), and

good estimates will result. As mentioned earlier, (19) and

(23) have be deduced, from fundamentals, as the Ockham
Prior, whose excellent regularization properties, in both Es-

timation and Model Selection, have been explored in simu-

lations [5, 9, 11]. Robust, threshold-free inferences are pos-
sible over a wide range of Signal-to-Noise Ratios (SNRs)

and observation window lengths (N).
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Figure 1: Invariance and Entropic Priors for ! in the 2-Cis

Model (22).
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