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ABSTRACT

Independent Component Analysis (ICA) is a statistical sig-
nal processing technique whose main applications are blind
source separation, blind deconvolution, and feature extrac-
tion. Estimation of ICA is usually performed by optimizing
a 'contrast' function based on higher-order cumulants. In
this paper, it is shown how almost any error function can
be used to construct a contrast function to perform the
ICA estimation. In particular, this means that one can use
contrast functions that are robust against outliers. As a
practical method for �nding the relevant extrema of such
contrast functions, a �xed-point iteration scheme is then
introduced. The resulting algorithms are quite simple and
converge fast and reliably. These algorithms also enable es-
timation of the independent components one-by-one, using
a simple de�ation scheme.

1. INTRODUCTION

Independent Component Analysis (ICA) [1, 2] is a statis-
tical signal processing technique whose goal is to express
a set of random variables as linear combinations of sta-
tistically independent component variables. Some applica-
tions of ICA are blind source separation [1], feature extrac-
tion [3], and, in a slightly modi�ed form, blind deconvo-
lution [4]. In the simplest form of ICA [2], we observe m
scalar random variables x1; x2; :::; xm which are assumed to
be linear combinations of n unknown independent compo-
nents, or ICs, denoted by s1; s2; :::; sn. These ICs si are
assumed to be mutually statistically independent, and zero-
mean. Let us arrange the observed variables xj into a vector
x = (x1; x2; :::; xm)T and the IC variables si into a vector
s, respectively; then the linear relationship is given by

x = As (1)

Here, A is an unknown m� n matrix of full column rank,
called the mixing matrix. The basic problem of ICA is then
to estimate both the mixing matrix A and the realizations
of the ICs si using only observations of the mixtures xj .
Two fundamental restrictions of the model are that, �rstly,
we can only estimate non-Gaussian ICs (except if just one
of the ICs is Gaussian), and secondly, we must have at least
as many observed linear mixtures as ICs, i.e. m � n. The
assumption of zero mean of the ICs is in fact no restric-
tion, as this can always be accomplished by subtracting the

mean from the random vector x. Moreover, the ICs and the
columns of A can only be estimated up to a multiplicative
constant, because any constant multiplying an IC in eq. (1)
could be cancelled by dividing the corresponding column of
the mixing matrix A by the same constant. For mathemat-
ical convenience, one usually de�nes that the ICs si have
unit variance. This makes the (non-Gaussian) ICs unique,
up to their signs [2]. Note that this de�nition of ICA implies
no ordering of the ICs.

The current algorithms for Independent Component
Analysis can be roughly divided into two categories. The
algorithms in the �rst category, e.g. [2, 5], rely on batch
computations minimizing or maximizing so-called contrast
functions based on higher-order cumulants. The problem
with these algorithms is that they require very complex
matrix or tensorial operations. The second category con-
tains adaptive algorithms often based on stochastic gradient
methods, which may have implementations in neural net-
works, e.g. [4, 6, 7, 8]. The main problem with this category
is slow convergence, and the fact that convergence depends
crucially on the correct choice of the step size (learning
rate) parameters. Furthermore, most of the proposed ICA
algorithms in both categories are highly non-robust against
outliers.

In this paper we introduce a large family of novel al-
gorithms for ICA estimation. First we introduce a general
family of 'contrast' functions whose extrema are closely con-
nected to the estimation of ICs. Then we show how the
�xed-point algorithm in [4, 9] can be generalized for �nding
the relevant extrema of such contrast functions.

Our 'generalized �xed-point' algorithms have a num-
ber of desirable properties. First, they are easy to use,
as they contain no user-de�ned parameters and require no
prewhitening of the data. Second, their convergence is fast,
and can be proven analytically. Third, for a suitable choice
of the contrast function, the generalized �xed-point algo-
rithm is much more robust against outliers than the great
majority of ICA algorithms, which are often based on esti-
mation of fourth-order moments.

2. FIXED-POINT ALGORITHM USING

KURTOSIS

In this section, we introduce the principle of �xed-point it-
eration using the classical contrast function, kurtosis. The



introduction of generalized contrast functions is postponed
to the following section. The algorithm presented in this
section is especially easy to analyze mathematically. For
practical purposes, however, the generalization of this algo-
rithm, to be introduced in the following sections, is much
better.

2.1. Kurtosis as a contrast function

Kurtosis, or the fourth-order cumulant [4], is de�ned for a
zero-mean random variable v as kurt(v) = Efv4g�3(Efv2g)2.
Kurtosis is a contrast function for ICA in the following
sense. Consider a linear combination of the observed mix-
tures x, say wT

x, where the vector w is constrained so that
Ef(wT

x)2g = 1. When wT
x = �si for some i, i.e. when

the linear combination equals, up to the sign, one of the
ICs, the kurtosis of wT

x is locally minimized or maximized
[4, 8]. This property is widely used in ICA algorithms, and
forms also the basis of the �xed-point algorithm presented
in this section.

2.2. Derivation of a �xed-point algorihm

Now we derive a �xed-point algorithm to �nd the relevant
extrema of kurtosis. This is a modi�cation for non-whitened
data of the algorithm presented in [4, 9]. First note that
the gradient of the kurtosis of wT

x with respect to w is

rwkurt(w
T
x) = 4[Efx(wT

x)
3g � 3CwEf(wT

x)
2g] (2)

where C = EfxxT g is the covariance of the data. Let us
now optimize this kurtosis under the constraintEf(wT

x)2g =

w
T
Cw = 1. By the classical conditions of Kuhn-Tucker,

we have in the extrema:

2�Cw = 4[Efx(wT
x)

3g � 3CwEf(wT
x)

2g] (3)

,

w =
2

�
[C

�1Efx(wT
x)

3g � 3w] (4)

where � is the Lagrangian coe�cient. This clearly suggests
a �xed-point algorithm in which the vector w(k� 1) is up-
dated in the k-th step as follows:

w
�

(k) = C�1Efx(w(k � 1)
T
x)

3g � 3w(k � 1) (5)

w(k) = w�

(k)=
p
w�(k)TCw�(k)

where the expectation is estimated using a su�ciently large
sample of data. Though the conditions of Kuhn-Tucker only
give a necessary condition of optimality, and only certain
extrema of kurtosis provide estimation of the ICs, this al-
gorithm does converge globally to one of the right extrema,
�nding always one of the ICs as the linear combination
w
T
x. This is proven in [9, 10].
Note that in (5) it is implicitly assumed that the co-

variance matrix C is not singular. If this is not the case,
the dimension of the data must be reduced, e.g., with PCA,
before running the algorithm.

2.3. Estimating several ICs

The algorithm in (5) estimates just one of the ICs. To
estimate several ICs, we need to do the �xed-point itera-
tion step (5) using several vectors w1(k � 1); :::;wN (k �

1), and decorrelate the corresponding linear combinations
w1(k)

T
x; :::;wN (k)Tx at every iteration. Methods for ac-

complishing this will be presented in Section 4 in connection
with the generalized �xed-point algorithm.

3. GENERAL CONTRAST FUNCTIONS

Above, we used kurtosis, the classical contrast function, for
estimating the ICs. In this section, we show how almost
any non-quadratic function can be used to derive a 'local'
contrast function for ICA. This is very important for many
practical applications, because the fourth power inherent
in kurtosis grows very fast and is thus quite sensitive to
outliers. Using contrast functions that grow slower than the
fourth power, we can �nd algorithms that are more robust
against outliers.

To begin with, note that one intuitive interpretation of
contrast functions is that they are measures of non-normality
[2]. Therefore, to obtain a contrast function based on an
arbitrary error function G, it is natural to consider the dif-
ference of the expectation of G for actual data from what
it would be for a Gaussian variable. In other words, we
can de�ne a contrast function J that measures the non-
normality of a zero-mean random variable x using any even,
su�ciently regular (non-quadratic) function G as follows

JG(x) = ExfG(x)g �E�fG(�x�)g (6)

where � is a standardized Gaussian variable, �x =
p

Efx2g,
and thus �x� is a Gaussian variable of the same variance as
x.

Clearly, JG can be considered a generalization of kur-
tosis. For G(x) = x4, JG becomes simply the kurtosis of x.
Note that G must not be quadratic, because then JG would
be trivially zero for all distributions.

Thus, it seems plausible that JG in (6) could be a con-
trast function, in the sense discussed in subsection 2.1. The
fact that JG is indeed a contrast function locally, i.e. near
a solution, is proven in [10]. The only condition is that the
IC si in question must ful�ll Efsig(si)� g0(si)g 6= 0, which
is reminiscent of the classical condition of non-zero kurtosis
[2]. We also conjecture that for a 'reasonable' choice of G,
JG is a global contrast function. Moreover, it seems reason-
able to presume that then also JG is a global contrast func-
tion, for most distributions of the ICs, in a more strict sense:
the maxima of jJG(w

T
x)j are obtained when wT

x equals
one of the independent components. Numerical simulations
seem to con�rm these conjectures. For G(t) = ln cosh(t)
(whose derivative is the tanh function), some simulation
results are depicted in Fig. 1.

4. THE GENERALIZED FIXED-POINT

ALGORITHMS

The actual search for the extrema of a general contrast func-
tion JG as in (6) may then be performed in many di�erent
ways, e.g. by (stochastic) gradient descent, as was done
with kurtosis in, e.g. [4, 8]. This adaptive, neural-like ap-
proach is developed elsewhere. However, as was explained
in Section 2, a highly e�cient, reliable and simple algorithm
for �nding the relevant extrema can be obtained using the
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Figure 1: A numerical example illustrating that JG may be
a contrast function in a more global and strict sense. Here
G(x) = ln cosh(x). In the 2-D case, JG was plotted as a
function of the angle between w and one of the columns of
A, which was here orthogonal. Three sets of ICs were used.
Continuous line: one super-Gaussian and one sub-Gaussian
IC. Dash-dot: Two super-Gaussian ICs. Dashed line: Two
sub-Gaussian ICs. The maxima of the absolute value of JG
were always obtained when the angle was 0 or �=2, which
were exactly the directions of the ICs.

�xed-point method. Thus we obtain an important general-
ization of the �xed-point algorithm presented in [4, 9].

4.1. Estimating one of the ICs

To derive the generalized �xed-point algorithm, �rst note
that whenEf(wT

x)2g = wCw = 1, the gradient of JG(w
T
x)

equals [10]

rwJG(w
T
x) = Exfxg(w

T
x)g �E�fg

0

(�)Cwg; (7)

where g = G0 is the derivative of G, and g0 is the derivative
of g. Now we can use the same logic as in Section 2. Thus
we use the Kuhn-Tucker conditions to obtain the following
generalized �xed-point algorithm:

w
�(k) =

C
�1Efxg(w(k� 1)Tx)g �Efg0(w(k � 1)Tx)gw(k � 1)

w(k) = w�(k)=
p
w�(k)TCw�(k)

(8)
where g can thus be chosen to be any odd, su�ciently reg-
ular, non-linear function, and the two expectations are, in
practice, estimated using the average of a large sample of x.
Note that � in the latter expectation has been replaced by
w
T
x to enhance the convergence of the algorithm; this mod-

i�cation does not change the validity of the Kuhn-Tucker
conditions. It is proven in [10] that using the algorithm in
(8), w(k) converges, up to the sign, to one of the rows of the
inverse of the mixing matrix A. This enables estimation of
one of the ICs as s = A�1

x. (Note that the non-singularity
of C also implies that A can be assumed to be an invertible
square matrix.) The only condition of convergence is that
Efsig(si)� g0(si)g 6= 0 for all si that we want to estimate.
This can be considered a generalization of the condition,

valid when kurtosis is used as contrast, that kurtosis of the
ICs must be non-zero [2, 8, 4]. We prove in [10] analytically
only the local convergence of the algorithms, i.e. conver-
gence for initial points near a solution. Our simulations,
however, indicate that if g is a 'nice' function in some in-
tuitive sense (smooth, does not have many local extrema),
the algorithms do converge globally, i.e. starting from any
(random) initial point w(0).

The convergence of (8) is shown in [10] to be cubic,
and experiments show that usually less than 10 iterations
is enough. This means that these algorithms are very fast.
They are also very reliable, because no parameters need to
be tuned for good convergence.

4.2. Choice of Non-Linearity

As a concrete choice of the non-linearity g in (8), we propose
the following functions that give algorithms that are robust
against outliers:

g1(u) = tanh(u); g01(u) = cosh
�2

(u) (9)

g2(u) = u exp(�u2=2); g02(u) = (1� u2) exp(�u2=2) (10)

The robustness is due to the fact that these functions do
not give large values for arguments far from 0. In fact, g2
becomes 0 for large arguments, and thus provides an ex-
tremely robust algorithm. However, to bene�t from the
exceptional robustness o�ered by g2 requires that the esti-
mation of the covariance matrix C is also done in a highly
robust way, which is out of the scope of our paper. Thus, g1
is already as robust as one can get using ordinary estimation
of the covariance matrix.

4.3. Estimating several ICs

The algorithm in (8) estimates just one of the ICs. To
estimate several ICs, we need to run the algorithm (8) us-
ing several vectors w1; :::;wN . To prevent di�erent vectors
from converging to the same extrema, we must decorrelate
the linear combinations wT

1 x; :::;w
T
Nx after every iteration

of (8). A simple way of achieving this is a de�ation scheme
based on a Gram-Schmidt-like decorrelation. This means
that we estimate the ICs one by one. When we have esti-
mated p ICs, or p vectors w1; :::;wp, we run (8) for wp+1,
and after every iteration step subtract from wp+1(k) the
'projections' of the previously estimated p vectors, and then
renormalize wp+1(k):

1. Let wp+1(k) = wp+1(k)�
Pp

j=1
wp+1(k)

T
Cwjwj

2. Let wp+1(k) = wp+1(k)=
p
wp+1(k)TCwp+1(k)

(11)

In certain applications, however, it may be desired to
use a symmetric decorrelation, in which no vectors are 'priv-
ileged' over others [11]. This can be accomplished, e.g., by
the classical methods involving matrix square roots, or by
the following simple iterative algorithm, whereW(k) is the
matrix (w1(k); :::;wN(k)) of the vectors:

1. LetW(k) =W(k)=
p
kW(k)TCW(k)k

Repeat 2. until convergence:

2. LetW(k) = 3

2
W(k)� 1

2
W(k)W(k)TCW(k)

(12)



The norm in step 1 can be almost any ordinary matrix
norm, e.g., the largest absolute row (or column) sum (but
not the Frobenius norm). Note that the normalization in
the �xed-point step can be omitted when using (12). The
convergence of the orthonormalization method in (12) is
proven in [10].

5. SIMULATION RESULTS

To demonstrate the convergence of our algorithms, and es-
pecially their robustness, we applied our algorithm to blind
separation of four arti�cially generated source signals in the
presence of some disturbing outliers. Two of the signals
were super-Gaussian, and two were sub-Gaussian. These
source signals were mixed using several random square ma-
trices, whose elements were drawn from a standardized Gaus-
sian distribution, so as to obtain di�erent mixed signals. To
test the robustness of our algorithms, four outliers whose
values were �10 were added in random locations in the
mixtures. Then we used our generalized �xed-point algo-
rithm to estimate the original signals. Three di�erent non-
linearities were used: the cubic function as in (5), and the
two non-linearities in (9) and (10). Moreover, two di�erent
estimators of the covariance matrix were used: the conven-
tional estimator using the sample average of xxT , and a
theoretical robust estimator, which was simulated by esti-
mating the covariance matrix without the outliers. In all
the runs, the following were observed:

� 10 iterations were always enough for convergence

� No convergence to non-desired point was observed,
i.e. the convergence was always global.

� Estimates based on kurtosis (i.e. the cubic non-
linearity) were essentially worse than the others

� Estimates using (10) were slightly better than those
using (9).

� The two preceding e�ects were much stronger if the
covariance matrix was estimated in a robust way. In
fact then the estimations using (10) were practically
perfect in spite of the added outliers.

For details, see [10].

6. CONCLUSIONS

We introduced a generalized version of the �xed-point al-
gorithms presented in [4, 9] for ICA estimation. These gen-
eralized �xed-point algorithms have a number of desirable
properties:

� They contain no parameters that need to be de�ned
by the user.

� They are very simple to program.

� They require no prewhitening of the data.

� Their fast, cubic convergence can be proven analyti-
cally.

� For some choices of the non-linearity, for example
those in (9) and (10), they are much more robust
against outliers than conventional ICA algorithms.

Some applications of ICA using the generalized �xed-point
algorithm, or the original �xed-point algorithm in [4, 9], are
described in [11].
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