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ABSTRACT

In this paper, we present a new method for on-line identification of
time-varying FIR channels. Two conditionally coupled estimators
are proposed. In both cases an augmented-state adaptive Kalman
filter is employed for tracking the time-varying channel and esti-
mating the mean channel response. Coupled to the Kalman filter
is an algorithm for estimating the parameters of the underlying
auto-regressive (AR) model which describes the time evolution of
the channel. For the first coupled estimator, we propose a new
recursive least squares algorithm for estimation of these AR pa-
rameters directly from the channel observations. An alternative
algorithm based on estimation of the channel covariance is used in
the second coupled estimator. A simulation example demonstrates
the performance of the proposed estimators.

1. INTRODUCTION

Characterization and estimation of time-varying linear channels
are important to a wide variety of applications, including digital
communications, mobile radio, radar and sonar [1, 2, 3]. The time-
varying nature of the channels can cause difficulties in the design of
optimal receivers, since both time-selective and frequency-selective
fading occur. On-line estimates of the channel are needed for
equalization and detection.

The estimators described in this paper are suitable for providing
channel estimates for an equalizer where periodic re-training is
used. During training, the channel inputs are known at the receiver
and are used with the observed channel output to form estimates
of the underlying channel parameters. The equalizer uses these
estimates to approximate the effect of the channel during reception
of unknown inputs. Decision feedback equalization is also possi-
ble, where a digital input estimator (such as Viterbi algorithm or
maximum a posteriori (MAP) decoder) can be used to condition
the channel estimators presented here.

In this paper, we consider a discrete-time model for a randomly
time-varying linear channel. The channel is modelled as a finite
impulse response (FIR) tapped-delay line filter. An auto-regressive
(AR) model is employed to describe the time evolution of the
channel taps. This channel model is applicable to general fading
channels, as will be discussed in Section 2. Using the AR model, we
propose a Kalman filter for tracking the complex-valued channel
taps. Importantly, we augment the state of the Kalman filter to
estimate the mean value of the channel taps. This is presented
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Figure 1. Observed Channel

in Section 3. In Section 4., we present our recursive least squares
(RLS) algorithm for estimating the parameters of the AR process.
In a similar manner to [4], we couple the RLS estimator with the
Kalman filter to jointly estimate the channel tap means and the AR
parameters (Section 5.). As an alternative to our RLS estimation
of the AR parameters, we consider a method in Section 6. in which
the AR parameters are derived from the channel tap covariance via
the Yule–Walker equation. We reformulate the algorithm proposed
by Tsatsanis et al. [5] for estimating the covariance to explicitly
incorporate channels with non-zero-mean, and couple this with the
augmented state Kalman filter for channels with unknown mean
response. The performance of estimators presented in this paper is
demonstrated with a simulation example in Section 7.

2. CHANNEL MODEL

Consider the discrete-time transmission system shown in Figure 1,
where the channel is modelled as a tapped-delay line filter which
is finite in extent, and consequently has a finite impulse response.
We choose the channel taps to have complex coefficients, and
for convenience, the tap spacing is the same as the input signal
sampling rate [6]. However, the algorithms presented in this paper
also directly apply to channels modelled with fractional spacing.

By representing baseband signals in complex notation, the re-
ceived signal is given by:

z(t) =

L�1X
�=0

s(t��)h(t; �) + n(t) ; t = 0; 1; 2 : : : (1)

where L is the number of channel taps, s(t) 2 C (the set of
complex numbers) is the input at time t, and h(t; �) 2 C is the �th

channel tap at time t. The observation noise, n(t), is assumed to be
zero-mean white Gaussian noise, with known variance �2n (i.e. the
real and imaginary components each have variance 0:5 �2n [7]). In
practice, there is some fixed delay, m, from transmitter to receiver.
Without loss of generality, the delay is assumed to be zero in (1).

The time-varying impulse response of the channel, h(t; �), con-
sists of a mean response component, h(�), and zero-mean randomly



time-varying component, ~h(t; �):

h(t; �) = h(�) + ~h(t; �) (2)

A channel with non-zero-mean taps occurs when there are fixed
scatterers or reflectors, giving rise to h(�). The random component
results from the changing physical characteristics of the transmis-
sion medium. In this paper, we assume the random component,
~h(t; �), has Gaussian real and imaginary components [8].

An auto-regressive process of order R models the time-varying
components of the channel taps. The choice of R is a trade-off
between the accuracy of the model and the difficulty in estimating
its parameters. Now, consider the following equation:

~h(t) = F1
~h(t�1) + � � �+ FR

~h(t�R) + u(t) (3)

where ~h(t) =
�
~h(t; 0) � � � ~h(t; L�1)

�T
, and T is the trans-

pose operator. The generating noise for the random process,
u(t) = [u(t; 0) � � � u(t; L�1)]T is assumed to be zero-mean i.i.d.
complex Gaussian, with known covariance �2u. The AR parame-
ters contained in the matrices F1 : : :FR are complex in general.
However, if it is assumed that the real and imaginary parts ofh(t; �)
are independent, these AR parameters will be real. For stability
and wide-sense stationarity of the AR process, the roots of the
characteristic equation, j I�

P
R

�=1
F�z

�� j= 0, must lie inside
the unit circle of the z-plane [9]. Such a sub-class of channels is
commonly known as wide-sense stationary (WSS) [2].

For some channels, the taps may be assumed independent. These
channels are referred to as having uncorrelated scatterers (US) [2].
This assumption can be built into the AR model by appropriate
choice of elements in the matrices,F1 : : :FR (i.e. by setting cross-
terms to zero). Note that in this paper, we consider a general WSS
channel of which the commonly assumed WSS–US [1, 2], is only
one possible subclass.

3. CHANNEL TAP COEFFICIENT ESTIMATION AND
TRACKING

In this section, we note that when the AR parameters contained in
the matrices F1 to FR in (3) are known, a Kalman filter can be
used to track the time-varying component of the channel taps. In
addition, we augment the state to include the channel tap means

h =
�
h(0) � � � h(L�1)

�T
. In doing so, we benefit from the

fact that the Kalman filter takes into account the joint effect of
the time varying component, ~h, and the mean, h, of the channel
response in the observations. This has advantages over alternative
techniques which may estimate ~h and h separately. Augmentation
of the state vector also allows adaptive estimation of the channel
mean, h, which may vary over time due to changes in the operating
environment.

The augmented state vector for the Kalman filter is x(t) =�
~h(t); � � � ; ~h(t�R+1);h

�T
. Thus, we rewrite (3) in the follow-

ing form:

x(t) = Ax(t�1) + v(t) ; t = 0; 1; 2 : : : (4)

where v(t) = [u(t);0; � � � ;0], and:

A =

2
666664

F1 F2 � � � FR 0

I 0 � � � 0 0

0
. . .

...
...

... I 0 0

0 � � � 0 I

3
777775

(5)

By defining a vector of input signal samples s(t) =

[ s(t); s(t�1); � � � ; s(t�L+1)]T and the observation matrix
C(t) =

�
s
T (t);0; � � � ;0; sT (t)

�
, the observation equation (1) for

the system can be written:

z(t) = C(t)x(t) + n(t) ; t = 0; 1; 2 : : : (6)

With this formulation, a complex Kalman filter [9, pg. 321] can
be used to provide on-line estimates of the channel tap offsets,
~h(t; �), and the channel tap means, h(�), which define the channel
impulse response at each time instant.

4. AR PARAMETER ESTIMATION

In the previous section the AR parameters incorporated into the
Kalman filter were assumed known. Here, we detail our algorithm
for estimating the matrices of AR parameters,F1 toFR. Assuming
knowledge of the channel taps, h(t; �), we use the observations,
z(t), and the inputs s(t), in a recursive least squares algorithm to
estimate the AR parameters directly.

Consider the observation equation (6). By substituting (4),
and rewriting the AR parameters in A into a column vector,
f = [(vecF1)

T; � � � ; (vecFR)
T]T 2 C

RL
2�1, we can rewrite

equation (6) as a linear function of f :

z(t) = s
T (t)F1 ~h(t�1) + � � � + s

T (t)FR ~h(t�R)

+sT (t)h+ s
T (t)u(t) + n(t)

= T(t) f + s
T (t)h+ s

T (t)u(t) + n(t) (7)

where

T(t)
4
=[sT (t) ~h(t�1; 0); sT (t) ~h(t�1; 1); � � � ;

s
T (t) ~h(t�1; L�1); � � � ; � � � ; sT (t)~h(t�R;L�1)]

Thus:

e(t) = z(t)� s
T (t)h = T(t) f + s

T (t)u(t) + n(t)

= T(t) f + �ltered noise (8)

This way of manipulating the observation equation is the key to
our estimation of the AR parameters. We can now apply a com-
plex recursive least squares (RLS) algorithm [9] to (8) in order to
estimate f .

5. COUPLED ESTIMATOR

In Section 3., we presented an augmented state Kalman filter to
track channel tap offsets, ~h(t), and to estimate the mean value
of the channel taps, h. The AR parameters contained in the F
matrices were assumed known. In Section 4., we presented a new
RLS method for estimating the AR parameters, assuming the values
of the channel taps were known. The estimators are combined in
the proposed coupled estimator structure of Figure 2.
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Figure 2. Coupled Kalman Filter and AR Parameter Estimator

The coupled Kalman filter and the RLS estimator jointly estimate
the channel taps, h(t; �), of (2), and the AR parameters contained
in the F matrices of (3). At each sample, the channel output, z(t),
and the input, s(t), are used by the Kalman filter to estimate the

time-varying channel offsets, ~̂h(t; �), as well as the mean values of

the channel taps, ĥ(�). These estimates are then used in the RLS
estimation of the AR parameters, and hence the F̂matrices. A new
estimate of A is then formed for use by the Kalman filter at the
next sample.

In general, the issue of convergence for coupled estimators re-
mains open. It is clear, however, for the coupled estimator of
Figure 2, that if the Kalman filter provides the correct values for
the coupled parameters to the AR parameter estimator, then the AR
parameter estimator will converge to the correct estimates, and vice
versa. Simulation results in Section 7. (and [4]) indicate that the
coupled estimates converge in practice if appropriately initialized.

6. CHANNEL COVARIANCE ESTIMATION

For a wide-sense stationary (WSS) channel, the channel covariance
is k~h(t; s; �; �) = E [ ~h(t; �) ~h�(s; �) ] = k~h(�; �; �), where �

denotes complex conjugate and � = t � s. This covariance is
directly related to the AR parameters via the Yule–Walker equation
[9]. The Yule–Walker equation is:

[K1 � � � KR] = [F1 � � � FR]

2
4

K0 � � � KR�1

...
. . .

...
K�R+1 � � � K0

3
5 (9)

where K� = E [ ~h(t+�)~h+(t) ] (+ is the Hermitian operator).
Note that k~h(�; �; �) = k�~h(��; �; �), and therefore K�� = K�

+.
If the channel tap covariance matrices K0 : : :KR are known,

(9) can be used to determine the AR parameters. In this section
we consider an algorithm recently proposed by Tsatsanis et al. for
estimating the channel tap covariance. The method, as described in
[5], separately estimates the channel mean and the channel covari-
ance. In this paper, we reformulate the estimation of the channel
covariance to explicitly incorporate the channel mean. When the
channel mean is unknown, it can be estimated with a Kalman filter,
as in Section 3..

Consider the conditional expectation of the output covariance,
E [ [z(t+ �)� z(t+ �)] [z(t)� z(t) ]� j s(t)], where the out-

put from the mean channel response at time t is z(t) =
L�1P
�=0

s(t�

�)h(�). From (1), and using the fact that ~h(t; �) is independent of

n(t), we obtain:

E

�
[z(t+ � )� z(t+ �)] [z(t)� z(t) ]� j s(t)

�

= E

�
[
L�1P
�=0

s(t+���)h(t+�; �)�

L�1P
�=0

s(t+���)h(�) + n(t+� ) ]

[
L�1P
�=0

s(t��)h(t; �)�

L�1P
�=0

s(t��)h(�) + n(t) ]�
�

=
L�1P
�;�=0

s(t+���) s�(t��) k~h(�; �; �) + �2n�(�)

(10)

where �(� ) is the Kronecker delta function. Note that the assump-
tion of a WSS channel has been used (i.e.E [ ~h(t+�; �)~h�(t; �) ] =
k~h(�; �; �) ). Thus for each time t, we have:

E [ [ z(t+ � )� z(t+ � ) ][ z(t)� z(t) ]� j s(t) ] =

�
+(t; � ) �(� ) + �

2

n�(�) (11)

where

�(� ) = [k~h(�; 0; 0); � � � ; k~h(�; 0; L�1);

� � � ; � � � ; k~h(�; L�1; L�1)]T

�
+(t; � ) = [s(t+� ) s�(t); � � � ; s(t+� ) s�(t�(L�1))

� � � ; � � � ; s(t+��(L�1)) s�(t�(L�1))]

Following [5], we use the instantaneous value for the output
covariance as an approximation to the expected value. However,
here we include the mean response. Therefore, (11) becomes:

[ z(t+ � )� z(t+ �) ][ z(t)� z(t) ]� � �
2

n�(�) ' �
+(t; �) �(�)

(12)
Now, (12) provides a basis for estimating the channel tap covari-

ance, �(�). We note that using the instantaneous approximation
for the output covariance actually ensures a stationary point on the
likelihood surface [10].

Now, at the arrival of each data sample, the mean responses
z(t) and z(t + � ) are calculated using the mean values of the
channel taps. Several RLS algorithms are employed to update the
estimates of the covariance, �̂(�), one for each � = 0 : : : R. These
covariance estimates are then used in the Yule–Walker equation (9)
to derive estimates for the AR parameters.

When the mean values of the channel taps are not known, we
propose to couple this estimator with the Kalman filter of Section
3. in the same way as the new RLS estimator for the AR parameters
(Figure 2).

7. SIMULATION EXAMPLE

In this section, we use the example in [5], to demonstrate the
performance of the coupled estimators. A channel with L = 2
taps is considered. An AR model of order R = 1 is used to
model the zero-mean time-varying components. Therefore ~h(t) =
F1

~h(t�1)+u(t). The process noise is chosen to be�2u = 0:005,
and the regression matrix is:

F1 =

�
f11 f12
f21 f22

�
=

�
0:3 0:8
�0:5 0:3

�
(13)
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Figure 3. Estimation of Realff11g and Imagff11g. Average
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The mean impulse response is chosen to be h = [ 1+0:2j;�0:5+
0:5j ]T . The input s(t) is drawn from a 16-QAM constellation at
random, thereby effectively assuming an i.i.d. digital source with
no channel coding. The channel is observed in additive white
Gaussian noise, n(t), with variance �2n = 1� 10�2 .

In the following, the coupled estimator in which the AR param-
eters are estimated directly from the observations using an RLS
algorithm is labelled Algorithm A. Algorithm B is the coupled es-
timator in which the AR parameters are derived from estimates of
the channel covariance.

The performance of Algorithms A and B was characterized over
500 data sets. A failure was declared if any of the final parameter
estimates were not within�25% of their true value. Failures were
observed to occur in three ways: i) no final estimates of the param-
eters obtained i.e. catastrophic failure (Algorithm B only); ii) the
estimates converge to a local minima and not the true parameters;
and iii) estimates converge extremely slowly and therefore are not
within the�25% bound at the cessation of the run (5000 samples).
With all parameter estimates initialized to zero, Algorithm A was
successful on 84:4% of the data sets, and Algorithm B was success-
ful on only 6:4%. The average performance of the estimators over
the successful data sets is shown in Figures 3 and 4. The estimates
of the first AR parameter and first channel tap mean are shown.
These results highlight the benefit of estimating the AR parameters
directly from the observations (Algorithm A), rather than via the
channel tap covariances (Algorithm B).
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