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ABSTRACT

This paper considers the identi�cation of time-invariant
bilinear models using observed input{output data. Bi-
linear models represent a parsimonious class of nonlin-
ear parameterisations and have been used in a variety
of applications. However the performance of the bi-
linear model can be limited in practice when standard
least-squares techniques are used, as this leads to bi-
ased parameter estimates. Most existing solutions for
this problem are restrictive, suboptimal, or computa-
tionally intensive. We propose an alternative approach
to this identi�cation task by utilising a robust regres-
sion technique, known as bandlimited regression, to ob-
tain bilinear parameter estimates with reduced bias.
The approach is numerically stable and computation-
ally inexpensive. Simulations are given to demonstrate
the usefulness of the technique for bilinear system iden-
ti�cation.

1. INTRODUCTION

System identi�cation is concerned with characterising
an unknown system using measurements of the sys-
tem's input{output signals. Although a linear parame-
terisation can be used as a system model, many real-life
systems show nonlinear behaviour [1]. As a result, it
is important to consider nonlinear models in order to
accurately characterise real-life phenomena.

One particularly attractive model for nonlinear sys-
tem identi�cation is the bilinear model, which can eco-
nomically characterise a wide class of nonlinear phe-
nomena [1,2]. However the performance of the bilinear
model can be severely limited in practice when ordi-
nary least-squares estimation techniques are used, as
the recursive model leads to correlated residuals and
thus biased parameter estimates.

A variety of approaches have been proposed in an
attempt to overcome this problem, including high SNR
assumptions [2], an assumed noise covariance struc-

ture [3], autoregressive noise models [1] and compli-
cated variants of the recursive prediction error method
using extended Kalman �lters [4]. However these al-
ternatives tend to be suboptimal, computationally in-
tensive, and/or numerically sensitive. Hence there is
a need for a simple procedure to accurately identify
bilinear system in the noisy case

In an attempt to solve this identi�cation problem,
we consider applying a recently devised regression pro-
cedure, known as bandlimited regression [5], to esti-
mate the parameters of the bilinear model. Unlike
previous bilinear system identi�cation procedures, the
proposed approach is simple, not restricted to the high
SNR case, and does not require detailed prior knowl-
edge of the noise covariance matrix.

We introduce the bilinear model in Section 2. It
should be noted, however, that the identi�cation tech-
nique is general in that it can be applied to other non-
linear models such as the Volterra or Hammerstein se-
ries [6, 7]. In Section 3, we indicate how the concept
of bandlimited regression can be used as a solution to
the bilinear system identi�cation problem. We discuss
computational considerations in Section 4, and present
simulation results in Section 5 to demonstrate the util-
ity of the identi�cation technique.

2. THE BILINEAR MODEL

The bilinear model is a member of the class of recursive
polynomial �lters [4, 2, 8]. Bilinear models represent a
simple and powerful class of nonlinear models, and have
subsequently found many applications in nonlinear sys-
tem identi�cation (e.g., see [1{4]). The bilinear model
is also parsimonious: It has been shown that a �nite
order bilinear model can have an in�nite number of
non-vanishing terms when expanded as a Volterra se-
ries [8]. As a result, it can economically model a large
class of nonlinear phenomena and is thus particularly
attractive for nonlinear system identi�cation.



We consider a discrete-time bilinear model given by

Y (t) =

M�1X
k=0

a(k)X(t� k)

+

NX
k1=1

NX
k2=1

b(k1; k2)Y (t� k1)X(t� k2) +E(t) ;

(1)

where X(t) and Y (t), t 2 Z, are the observed input
and output signals for t = 0; 1; : : : ; T � 1, and a(k),
k = 0; 1; : : : ;M , and b(k1; k2), k1; k2 = 0; 1; : : : ; N , are
called the linear and bilinear kernels, respectively. E(t)
is a zero-mean signal representing model and observa-
tion error, and it is assumed that X(t) and E(t) are
independent. Figure 1 shows the basic con�guration of
the bilinear system in (1).
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Figure 1: A schematic of the bilinear system considered.

Stability issues are of special relevance here as the
bilinear model is recursive. We rely on the conditions
for bilinear model stability given in [1,2]. It is therefore
assumed that the bilinear model in (1) is stable in that
it produces a su�ciently well behaved output for any
bounded input. Note also that it is not our intention to
solve the problem of optimal model order selection, i.e.,
the choice of M and N in (1) (see [9]), but rather to
introduce the use of bandlimited regression for bilinear
system identi�cation.

3. PARAMETER ESTIMATION

For simplicity, let the bilinear model in (1) be expressed
in matrix form as

y = X�+ e ; (2)

where y is the [T � 1] output vector, X is the [T �

(M +N
2)] augmented \input" matrix whose columns

span the model space, � is the [(M+N2)�1] parameter
vector, and e is the [T � 1] residual (or error) vector.

The underlying problem is that the use of ordinary
least-squares techniques lead to biased parameter es-
timates in the presence of observation noise1. If the

1
This is also known as the equation-error approach.

[T � T ] noise covariance matrix of e was known and
invertible, then a minimum variance unbiased estimate
of � could be readily obtained.

However, the noise covariance matrix is usually not
known in practice, and is frequently di�cult to esti-
mate. Unfortunately, the limitations and complications
associated with existing solutions to this problem tend
to detract from the underlying bene�ts of the bilinear
model as a system parameterisation.

3.1. Bandlimited Regression

In an attempt to solve this bilinear system identi�ca-
tion problem, we consider applying a bandlimited re-
gression technique [5] to estimate the parameters of the
bilinear model. Bandlimited regression is a method of
performing regression that is robust against correlation
in the errors, and can provide superior performance
over ordinary linear regression schemes. Bandlimited
regression also leads to less biased estimates of the co-
e�cient variances, which is particularly important for
hypothesis testing and model validation.

In bandlimited regression, the bilinear model pa-
rameters are chosen so as to minimise

(y �X�)
0

A (y �X�) (3)

with respect to �. Here A is a [T �T ] truncated spec-
tral expansion matrix with elements

A(t1; t2) =

L�1X
l=0

al v
(T )

l
(t1)v

(T )

l
(t2) ; (4)

for t1; t2 = 0; 1; : : : ; T � 1, where v
(T )

l
(t1) are the dis-

crete prolate spheroidal (or Slepian) sequences, and al,
l = 0; 1; : : : ; L � 1 are spectral weighting parameters.
The Slepian sequences and their associated eigenvalues,
�l, are solutions of the eigenvector equation [10]

D
(T )(t1; t2;W ) =

sin
�
2�W (t1 � t2)

�
�(t1 � t2)

(5)

where 0 < W < 1=2 is the local bandwidth parameter.
The eigenvalues of (5) are ordered such that 1>�0 >

�1 > � � �>�L�1>0. The Slepian sequences provide the
best approximants to bandlimited functions on a given
time and frequency support. Speci�cally, the truncated
Slepian sequences on [0; T � 1] have the lowest energy
outside the spectral band [�W;W ] Hz from among all
bandlimited functions. Figure 2 shows the �rst �ve
Slepian sequences for W = 0:005 and L = 1024.

3.2. Choice of regression parameters

The spectral expansion matrixA is de�ned by the local
bandwidth parameter W (or equivalently L) and the
spectral weighting parameters al, l = 0; 1; : : : ; L� 1.
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Figure 2: The �rst �ve Slepian sequences for W = 0:005
and L = 1024.

Given that the residual spectral density is band-
limited on [�W;W ] Hz, it is then su�cient to consider
(at most) the �rst L = b2WT c Slepian sequences; con-
versely, the �rst L Slepian sequences can be used to
express any bandlimited residual spectral density on
[�L=(2T ); L=(2T )] Hz [10]. An estimate of the opti-
mal bandwidth may also be obtained by examining the
variance of the residual as a function of W [5].

The spectral weighting parameters can be chosen so
that each observation has approximately the same sta-
tistical leverage on each estimate. This type of estimate
is robust against correlated residuals and outliers. It
can however lead to increased computational costs and
some interpretability complications [5]. Alternately, a
simpler scheme involves setting al = �l, which does not
substantially degrade the estimates.

The linear and bilinear kernels in (1) are subse-
quently extracted from the estimated parameter vector
�̂ (from (3)), which is a linear least-squares problem
given values of al and L.

4. DISCUSSION

The bandlimited regression technique can provide pa-
rameter estimates which are robust against correlated
errors and outliers. It is clear from (5) where the notion
of \bandlimited" regression arises, as the regression is
performed over regions where the columns of X (i.e.,
the model space) have their spectral energy most con-
centrated. In particular, bandlimited regression pro-
duces less biased estimates of the bilinear parameter
variances [5].

Note also that the formulation in (3) bears strong
similarity to the minimum variance unbiased estimator

of �, i.e., when the covariance matrix of the error is
known and invertible. However the error covariance
matrix is not usually known in practice and is fre-
quently di�cult to estimate, and thus the bandlimited
regression approach is well suited for the bilinear sys-
tem identi�cation problem.

4.1. Computation of the Slepian sequences

The direct approach for obtaining Slepian sequences
requires a complete eigen-analysis of (5), which can
be computationally expensive for large T . In addi-
tion, only a few eigenvectors of D(L)(m;n;W ) may be
needed.

A more computationally e�cient approach lies in
the use Slepian's equation [10, pp. 1376], which involves
solving for the eigenvectors of the tri-diagonal matrix
equation, M (T )(t1; t2;W ),

M
(T )(t1; t2;W ) =8>><
>>:

1
2
(N � t1)t1; t2 = t1 � 1�
T�1
2

� t1

�2
� cos (2�W ) ; t2 = t1

1
2
(t1 + 1)(T � 1� t1); t2 = t1 + 1

0; jt2 � t1j > 1 ;

for t1; t2 = 0; 1; : : : ; T � 1. Computationally e�cient
methods exist for the inversion of tri-diagonal matrices,
and thus this approach is favoured over a direct eigen-
analysis of (5).

5. SIMULATION

We applied the proposed bilinear system identi�cation
procedure to a simulated input{output system follow-
ing the examples in [1, p.52]. The time-invariant bilin-
ear system is given by

Y (t) = 1:5X(t) + 1:2X(t� 1)� 0:2X(t� 1)

+0:7X(t� 1)Y (t� 1)� 0:1X(t� 2)Y (t� 2)

+E(t) ; (6)

where M = 3 and N = 3. Zero initial conditions were
assumed. A white, zero-mean Gaussian noise process
was used as the input signal for T = 300. The or-
dinary least-squares technique was compared with the
bandlimited regression technique over a range of SNRs
using al = �l for L = 30. The normalised predic-
tion error was used for comparison and validation, i.e.,�P

T�1
t=0 (Y (t)� Ŷ (t))2

�
=

�P
T�1
t=0 Y (t)2

�
, where Ŷ (t) is

the predicted output signal using the estimated bilinear
model.

Figures 3(a) and 3(b) show typical input and out-
put signals for the bilinear system in (6). Figure 3(c)



shows the normalised mean-square prediction errors for
the two regression methods versus SNR (dB), averaged
over 50 realisations.

As would be expected the improvement gained with
the bandlimited regression technique over the ordinary
least-squares technique is most noticeable at lower val-
ues of SNR. The bilinear system is recursive, and thus
additional care must be taken to ensure that the pa-
rameter estimates lead to a stable model. Stability
should therefore be checked to ascertain that the esti-
mated parameters lead to a stable bilinear model [1,2].
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Figure 3: Typical (a) input and (b) output signals, and

(c) a comparison of the normalised prediction errors of the

ordinary least-squares method (dashed) and bandlimited

regression method (solid) verses SNR (dB).

6. CONCLUSIONS

We have developed a new procedure for identifying
time-invariant bilinear systems from measured input{
output data. By exploiting the concept of bandlimited
regression, we can obtain improved bilinear parameter
estimates over the use of ordinary least-squares meth-
ods. The technique can also be applied to other non-
linear models (e.g., the Volterra series) when corre-
lated residuals are evident. The overall solution repre-
sents computationally inexpensive and numerically sta-
ble approach to an otherwise di�cult nonlinear system
identi�cation problem.
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