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ABSTRACT

The paper presents a maximum likelihood (ML) blind
channel equalisation algorithm based on the expectation-
maximisation (EM) algorithm. We assume that the
channel input sequence is a �nite-state Markov chain
and the channel output sequence is obtained from the
continuous-time channel output by oversampling it at
a rate higher than the channel input symbol rate, which
leads to a fractionally-spaced channel equalisation prob-
lem. The objective of blind channel equalisation is to
estimate the channel input symbols without explicit
knowledge of the channel characteristics and the re-
quirement of training data. The availability of multi-
channel outputs for the same channel input improves
the reliability of the estimates. A reduced-cost blind
equalisation algorithm which draws on aggregation by
stochastic complementation is also proposed. A simu-
lation example is presented to demonstrate the perfor-
mance of the proposed algorithms.

1. INTRODUCTION

The paper proposes a maximum likelihood (ML) blind
channel equalisation algorithm for fractionally-spaced
�nite impulse response (FIR) channels. We assume
that the channel input can be modelled as a �rst-order,
�nite-state Markov chain. As di�erent from the previ-
ous work [1, 2, 3, 4], we apply hidden Markov model sig-
nal processing techniques to the problem of fractionally-
spaced channel equalisation. The availability of multi-
channel output observations helps to improve the re-
liability of parameter estimates. The developed algo-
rithm yields maximum likelihood (ML) estimates of the
channel input sequence and channel parameters. A re-
duced complexity sub-optimal implementation is also
proposed to make the algorithm practical.
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Fractionally-spaced blind channel equalisation algo-
rithms invariably assume a channel disparity condition
so as to achieve perfect zero-forcing equalisation for
FIR channels by means of �nite-length parametrisa-
tion at the equaliser. ML parameter estimation meth-
ods for white channel inputs also require the chan-
nel disparity condition to hold. The channel dispar-
ity is attained if the subchannels have no zeros com-
mon to all of them. The ML algorithms presented in
this paper are invariant to the channel disparity con-
dition, which makes them relatively robust and widely
applicable. The gradient-descent based blind equali-
sation algorithms such as the constant modulus algo-
rithm (CMA) are not capable of producing an accept-
able equalisation performance at high channel noise,
whereas ML estimation methods can yield reasonable
estimates even at high noise levels.

The paper is organised as follows. Section 2 de-
�nes the channel equalisation problem at hand. In
Section 3 we present an EM based blind equalisation
algorithm using �xed interval (noncausal) smoothing.
In Section 4 an aggregation method based on stochastic
complementation is proposed to reduce the computa-
tional complexity associated with ML estimation. A
computer simulation example for the reduced cost al-
gorithm is presented in Section 5.

2. PROBLEM FORMULATION

If a continuous-time channel output is oversampled at
a rate K times higher than the channel input sym-
bol rate T , the resulting channel output sequence can
be modelled as shown in Fig. 1. The channel input
sequence fu(k)g is assumed to be generated by an M -
state Markov chain s(k) with state space fe1; : : : ; eMg
(ei is the unit column vector of RM ), transition proba-
bility matrix A = [aij ] where aij = Prfs(k + 1) = ej j

s(k) = eig, i; j 2 f1; : : : ;Mg and
P

M

j=1 aij = 1, and

levels g = [g1; : : : ; gM ]T . The channel input sequence
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Figure 1: Signal model for fractionally-spaced channel
equalisation.

is obtained from the Markov chain by the inner prod-
uct u(k) = hg; s(k)i. The FIR subchannels are de�ned
by

Hi(z) =
L�1X
j=0

h
(i)

j
z�j ; i = 1; : : : ;K:

We shall denote the impulse response of subchannels

by hi = [h
(i)

0 ; : : : ; h
(i)

L�1]
T . The subchannel output dis-

turbances ni(k) are white Gaussian processes with zero
mean and variance �2

n
(i.e. ni(k) � N (0; �2

n
)) and are

also uncorrelated with each other.
Our objective is to estimate fu(k)g and Hi(z) in a

blind-folded manner. In the next section we will for-
mulate a method for obtaining ML estimates of these
parameters from subchannel output sequences.

3. ML PARAMETER AND STATE

ESTIMATION USING THE EM

ALGORITHM

The case of K = 1 has already been studied in the
literature (see e.g. [1]). The process S(k) = [s(k); s(k�
1); : : : ; s(k � L+ 1)]T associated with the subchannel
outputs is also a Markov chain with N = ML states
and state space fE1; : : : ;ENg where

Ei = [ei1 ; : : : ; eiL ]M�L; i 2 f1; : : : ; Ng: (1)

The initial state probabilities will be denoted by � =
[�1; : : : ; �N ]

T with �i = PrfS(1) = Eig, i 2 f1; : : : ; Ng.
The transition probabilities of S(k) are

pij = PrfS(k + 1) = Ej j S(k) = Eig

= Prfs(k + 1) = ej1 j s(k) = ei1g�(j2 � i1)

� � � �(jL � iL�1)

= ai1j1�(j2 � i1) � � � �(jL � iL�1)

for i; j 2 f1; : : : ; Ng, where �(�) denotes the Kronecker
delta function.

The noise-free subchannel output sequences can be
written as

xi(k) = hT
i
ST (k)g:

Obviously, the noisy subchannel output observations
ri(k) = xi(k)+ni(k) represent a hidden Markov model
(HMM). Whilst each subchannel Hi(z) and its input
sequence can be estimated separately, we will exploit
the fact that each subchannel is driven by a common
input sequence fu(k)g so as to improve the channel in-
put estimates and also to reduce the cost of estimation.

Let us de�ne the conditional symbol probabilities
for r(k) = [r1(k); : : : ; rK(k)]

T as

bi
�
r(k)

�
= f(r(k) j S(k) = Ei)

= (2��2
n
)�K=2

� exp

�
�

1

2�2n

KX
j=1

�
rj(k)� hTj E

T

i g
�2�

:

Let zT , fz(k) = (r(k);S(k)); k = 1; : : : ; Tg denote
the \complete" (fully categorised) data for which ML
estimation can be computed explicitly. For the in-
complete data problem where only rT , fr(k); k =
1; : : : ; Tg is available, explicit computation of an ML
estimate is usually not possible. The EM algorithm [5]
can be employed to generate a numerical solution to
the ML estimate for incomplete data. Starting with
an initial estimate �(0) of the Markov chain param-
eters � = (�;P ;h1; : : : ;hK ; �

2
n
), the EM algorithm

proceeds as follows:

E step: Evaluate the conditional expectation of the
complete data log-likelihood

Q(�(l); �) = Efln f(zT j �) j rT ; �(l)g

where �(l) is the parameter estimate on the lth
pass.

M step: Find � = �(l+1) that maximises Q(�(l); �).

These steps are described in some detail next.

3.1. The E Step

The complete data log-likelihood is given by

ln f(zT j �) = ln PrfS(1) j �g

+

T�1X
t=1

ln PrfS(t+1) j S(t); �g+
TX
t=1

ln Prfr(t) j S(t); �g



whence, on taking conditional expectation, we obtain

Q(�(l); �) =
NX
i=1

ln 1(i)�i

+

T�1X
t=1

NX
i=1

NX
j=1

�t(i; j) ln pij +

TX
t=1

NX
i=1

t(i) ln bi(r(t))

where the conditional probabilities

t(i) , PrfS(t) = Ei j zT ; �(l)g

�t(i; j) , PrfS(t) = Ei;S(t+ 1) = Ej j zT ; �(l)g:

are computed using the forward-backward algorithm [6].
The e�ort required for computation of t(i) and �t(i; j)
is the root cause of high computational complexity of
the EM algorithm.

3.2. The M Step

Assuming that we wish to estimate the subchannel pa-
rameters, the M step consists of maximising Q(�(l); �)
by setting @Q(�(l); �)=@hi(l + 1) = 0, which leads to

TX
t=1

NX
j=1

t(j)
�
ET

j
g
��
gTEj

�
| {z }

DL�L

hi(l + 1) =

TX
t=1

NX
j=1

t(j)ri(t)
�
ET

j
g
�

| {z }
(di)L�1

whose solution is simply given by hi(l + 1) = D�1di,
1 � i � K.

3.3. MAP Estimate of Channel Input Symbols

A maximum a posteriori (MAP) estimate of u(t) based
on the estimated parameters �(l) can be obtained from
the state estimate of the E step as follows

i� = argmax
1�i�M

Prfs(t) = ei j zT ; �(l)g

= argmax
1�i1�M

X
i2;::: ;iL

Prfs(t) = ei1 ; s(t� 1) = ei2 ;

: : : ; s(t� L+ 1) = eiL j zT ; �(l)g

û(t) = hg; ei�i:

(2)

Let us express t(i) explicitly as t(i1; i2; : : : ; iL) where
the relationship between the indices is governed by (1).
Then (2) can be rewritten as

i� = argmax
1�i1�M

X
i2;::: ;iL

t(i1; i2; : : : ; iL)

û(t) = hg; ei�i:

(3)

4. REDUCING THE COST BY

AGGREGATION

We use the concept of stochastic complementation [7]
to aggregate the Markov chain S(k). For FIR �ltered
Markov chains aggregated transition probability ma-
trix ~P is simply given by the channel input transition
probability matrix A [8]. In addition to aggregating
the transition probability matrix P , we also need to
aggregate the conditional symbol probabilities. The
aggregated symbol probabilities are given by [3]

~bi
�
r(k)

�
=

P
j2Si

�jbj
�
r(k)

�
P

j2Si
�j

; i = 1; : : : ;M
(4)

where � = [�1; : : : ; �N ] is the Perron-Frobenius eigen-
vector of P and Si is the state index set for the ith
aggregated state.

The EM algorithm can be applied to the aggregated
chain in the same way as before. Neglecting the terms
that do not depend on hi, the aggregated conditional
expectation of the complete log-likelihood is given by

~Q(�(l); �) =
TX
t

MX
i=1

~t(i) ln ~bi
�
r(t)

�
:

The M step for the aggregated chain does not have
an analytical solution. Gradient search or Newton-
Raphson methods may be used to maximise ~Q(�(l); �)
recursively. The gradient of ~Q(�(l); �) with respect to
hi(l + 1) is

@ ~Q(�(l); �)

@hi(l + 1)
=

1

�2
n

TX
t=1

MX
j=1

~t(j)

�

P
m2Sj

�mbm
�
r(t)

��
ri(t)� hTi (l + 1)ET

mg
�
ET

mgP
m2Sj

�mbm
�
r(t)

� :

We use the following gradient descent algorithm to �nd
the maximising hi(l + 1)

h
(j+1)

i
(l+1) = h

(j)

i
(l+1)+�

@ ~Q(�(l); �)

@h
(j)

i
(l + 1)

; i = 1; : : : ;K

where � is a possibly time-varying stepsize and h
(j)

i
(l+

1) is the value of hi(l + 1) at the jth recursion.

4.1. MAP Estimation

Similarly to Section 3.3, MAP estimate of the channel
input symbols can be obtained from

i� = argmax
1�i�M

~t(i)

û(t) = hg; ei�i:
(5)
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Figure 2: Subchannel parameter estimates.

5. SIMULATION EXAMPLES

To emphasise the advantage of the proposed ML esti-
mation method over other ML methods which require
the channel disparity condition to be satis�es, we con-
sider the following multichannel model (K = 2)

H1(z) = 0:4 + 0:64z�1 � 0:32z�2

H2(z) = 0:9� 0:16z�1 � 0:08z�2

where the subchannels have a common zero at z =
0:4 and therefore the channel disparity condition is not
satis�ed. The multichannel model is assumed to be
driven by a binary input sequence with u(k) 2 f�1; 1g
(M = 2), which is generated by a Markov chain with
transition probability matrix

A =

�
0:65 0:35
0:35 0:65

�

and equiprobable initial states.
We have simulated the reduced cost aggregation

method described in Section 4. The aggregated tran-
sition probability matrix is given by ~P = A. For
T = 1000 and �2n = 0:3, the convergence of the aggre-
gated EM is shown in Fig. 2 where the dashed lines
indicate the true subchannel parameters. In the M
step, we used 50 iterations per EM pass and a con-
stant stepsize of � = 2� 10�4 for the gradient descent
maximisation. The symbol error of the resultant MAP
estimates is 4:8%.

6. DISCUSSION AND CONCLUSION

We have presented an EM based ML estimation method
for fractionally-spaced blind channel equalisation. A

reduced cost aggregation method based on stochastic
complementation was also proposed. The existence of
local maxima and the local convergence of the EM al-
gorithm prompt the need of a good initialisation, which
may be achieved by other non-optimal blind equalisa-
tion algorithms.
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