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ABSTRACT

In this contribution, we address the comparison of Sub-
space (SS), Linear Prediction (LP) and Constant Mod-
ulus (CM) identi�caton/equalization algorithms in terms
of robustness to loss of Fractionally-Spaced channel dis-

parity. We show that SS procedure leads to an inconsis-
tent channel estimation. Investigating a left-inverse chan-
nel estimation, we show that LP results in the estimation
of the so-called minimum-phase multivariate channel factor-
ization. We show that CM criterion still perform reasonable
channel estimation, even if proper algorithm initialization
is still a critical subject.

Keywords: Fractionally spaced equalization. Channel di-
versity. Subspace method. Linear prediction. Constant
Modulus Algorithm.

1. INTRODUCTION

Since the pioneer work of Tong et al. [1] many blind Frac-
tionally Spaced (FS) channel estimation / equalization
technics have been proposed for digital transmission sys-
tems ([2, 3, 6, 7],...). The basic idea motivating these ap-
proaches consists in introducing channel diversity gener-
ated by either oversampling the received data or using a
multivariate data observed behind an array of sensors ([6]).

Under the so-called identi�ability condition (no com-
mon zero in the multichannel transfer function) all algo-
rithms have similar performances: they achieve perfect
identi�cation / equalization (in noise-free context). How-
ever, very few results are available on the performance in
realistic operating conditions, namely, when additive noise
is present and the channel is possibly a�ected by lack of

disparity ([7]) (i.e., when the multichannel transfer func-
tion h(z) have zeros numerically close). By introducing the
borderline case when numerically close zeros are exactly
equal (i.e., h0(z) in Figure 1), we compare, the robustness
to lack of channel disparity of some algorithms which have
been proposed recently. We evaluate, in particular, the best
achievable performances that can be expected when one of
the following Subspace like approach (SS), Linear Predic-
tion (LP) and Constant Modulus (CM) criteria are used.
For this class of blind identi�cation / equalization proce-
dures, we give a quantitative analysis of the loss of perfor-
mance illustrated by numerical simulations. To the our best
knowledge no such study exists.

2. FRACTIONALLY-SPACED SCHEME

The FS channel scheme consists in the l-dimensional FIR
channel transfer function denoted h(z) = h0(z)h(z) where
h0(z) is a scalar FIR transfer function of degree Q0 such

that h0(z) =
P

Q0

p=0
h0;p z

�p and h(z) = (h1(z); :::; hl(z))
>.

h0(z) corresponds to common zeros, i.e., the lack of dispar-
ity between the sub-channels h1(z); :::; hl(z). Each function

h
k
(z) writes as h

k
(z) =

P
Q�Q0

p=0
hk;p z

�p, where Q�Q0 de-

notes the degree of h(z) and Q the degree of h(z) which is
supposed known (A-1). Futhermore h(z) 6= 0 for each z,
i.e., there is no common zero between all components h

k
(z)

k = 1; :::; l (h(z) is identi�able) (A-2). The additive noise is
described by the l-variate vector w(n) = (w1(n); :::;wl(n))

>.
We consider that the input signal s(n) is an i.i.d. sequence
of �nite symbols such that E[s(n)] = 0 and E[s(n)2] = 1 (A-
3). Finally, we suppose that the noise w(n) is temporally
and spatially white (i.e., E[w(n)w>(m)] = �2Il if m = n, 0

otherwise) and independant of the sequence s(n) (A-4).
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Figure 1. FSE Scheme Under Lack of Disparity

The output multivariate signal can be written:

y(n) = [h(z)] s(n) + w(n) (1)

m

YN (n)=�N (h)SN+Q(n) +WN (n) (2)

with, �N (h)= �N (h )�N0
(h0) (3)

where YN (n) is the Nl-long observation vector (y(n); :::; y(n�
N�1))>. Let N0 = N+Q�Q0 then �N (h ) denotes the
Nl � N0 Sylvester channel convolution matrix associated
to h(z) and �N0

(h0) the N0 � (N +Q) Sylvester channel
convolution matrix associated to h0(z). Throughout the
paper, we assume that the condition Nl > N0 holds (A-5).
Note that, under the fondamental condition N > Q (A-6),
�N (h ) is a full-column rank matrix and �N0

(h0) is full-row
rank. S(n) contains the input sequence at n; n�1; :::; n�N�Q+1



and WN (n) is the Nl multivariate noise regression vector
(w(n); :::; w(n�N�1))>.

The identi�cation problem consist in the estimation of the
multichannel h(z) (or equivalently the convolution matrix
�N (h)), whereas the equalization problem addresses an es-
timation of a left inverse g(z), such as g(z)> h(z) = z��,
where � is an arbitray delay.

3. SUBSPACE IDENTIFICATION

In this section, we investigate the robustness with respect
to the channel disparity for the subspace (SS) identi�cation
method which was �rst introduced in ([6]). The analysis is
performed with exact statistics.

According to assumptions A1-4, the covariance matrix of
YN (n) is,

Ry

N
= �N (h )R0

N0
�N (h )> + �2IlN (4)

where R0
N0

=�N0
(h0) �N0

(h0)
>. In particular the rank of

R
0
N0

is the same than the row-rank of �N0
(h0) , i.e, N0.

This ensures that R0
N0

is a full rank de�nite positive ma-
trix. Consequently, the signal subspace ES , i.e, the sub-
space spanned by the row vectors of �N (h )R0

N0

�N (h )>

is the range of �N (h ). In other words, the signal sub-
space is spanned by the N0 eigenvectors associated to the
�i > �2 eigenvalues of Ry

N
, whereas the noise subspace EB is

spanned by the lN�N0 eigenvectors associated to the small-
est eigenvalues �i=�2. Thanks to the hermitian properties
of Ry

N
, ES and EB are orthogonal, so for each g 2 EB of

dimension Nl, we have g>�N (h ) = 0 .

For a given N , one e�ect of the lack of channel disparity is to
increase the noise subspace dimension by Q0 with respect to
the case of an irreducible h(z). However, the lack of channel
disparity phenomenon do not appear here as an handicap
for the noise subspace estimation, which corresponds to the
�rst step for of the SS method (see [6]). In particular, if
the degre Q0 of the scalar transfer function h0(z) is known,
we are able to identify (up to a constant) the irreducible
contribution h(z).

However when Q0 is unknown, which is supposed here, the
analysis of the subspace method performance is connected
to the knowledge of the set minimizing the quadratic crite-
rion:

Q(f) =

dim EBX
k

jg>
k
�N (f)j2=f>QN f (5)

This is the second step of SS method. Herein, gk are the
eigenvectors associated to EB. Hence, QN denotes the pos-
itive semi-de�nite matrix of dimension Nl � Nl writes asP

dimEB

k
�N (gk)�N (gk)

>, Note that, in order to avoid the
non trivial solution f = 0, the minimization is generally
made under a constraint such that kfk2=1.

In particular, the main question is to know if it is possible to
identify the channel h(z) = h0(z)h(z) as an unique solution
of ArgminQ(f).

Lemma 1 The global minimum f� of Q(f) is,

f� = �N0
(h00)

>
h (6)

m

f�(z) = h00(z)h(z) (7)

where �N0
(h00) denotes the Sylvester matrix associated to an

arbitrary scalar transfer function h00(z) of the same degree

as h0(z), i.e., Q0 and h is associated to the multivariate

transfer function h(z) of degree Q�Q0.

Proof: We referred here to the concept of minimal poly-
nomial basis of rational subspace introduced in [4] (see also
[2]). Under the condition N > Q�Q0, the rational sub-
space of dimension l� 1 associated to the orthogonal com-
plement of the l-variate polynomial function f(z) of degree
Q is characterized by a basis of polynomials functions of
degree at most N . In particular there is a bijection be-
tween the l-variate function gk(z), such as gk(z)

>f(z) = 0

and the Nl dimensional vector which lives in the left null
space of �N (f). Moreover, according to the fundamental as-
sumption A-2, all polynomials of the one-dimensional signal
subspace are l-variate function colinear to f(z) of the form
f(z) = f0(z)h(z). f0(z) denotes a polynomial scalar function
of degree Q0 and h(z) the minimal basis of the subspace
signal of degree Q�Q0.

Consequently, the orthogonality condition gk(z)
>f(z) = 0

can conveniently be rewritten as:

g>
k
�N (h>�N0

(f0)) = 0, h> �N0
(f0)�N (gk) = 0 (8)

where gk 2 EB.
Since the criterion Q(f) is of the form,

Q(f)=

dimEBX
k

jg>
k
�N (f)j2=

dim EBX
k

jg>
k
�N (h>�N0

(f0))j
2

it turns to the quadratic expression:

Q(f) = h>(�N0
(f0)QN �N0

(f0)
>)h

As �N (f0)QN �N (f0)
> is a positive semi de�nite matrix,

the minimum of Q(f) corresponding to a vector f orthogo-
nal to all gk , is of the form f� = �N0

(f0)
>
h. 222

It is interesting to know that this result can be recast in a
more general framework.In particular, the robustness anal-
ysis can be extended in the case of multiples sources.

According to the previous lemma, the nullspace of Q is re-
duced to one dimentional subspace spanned by the vector
h. In this case the subspace method results in a non consis-
tent estimator. Indeed, the minimization problem (5) ad-
mits in�nitely many solutions of the form h(z) = h00(z)h(z),
where h00(z) is any scalar polynomial with degree Q0. As a
consequence of this result, the channel is well estimated
if and only if h(z) is irreducible, i.e, in the case where
�N0

(h00) = IN0
corresponding to h0(z) = 1. Futhermore,

it is interesting to see that lack of channel disparity and
overestimation of the channel degree (see [2]) lead for the
subspace method to the same conclusion.



4. LINEAR PREDICTION BASED METHODS

In this section, we are interested in Linear Prediction (LP)
robustness in noise-free conditions and with exact statistics.

When the FIR model (1) is also a �nite order AR model
(in noise-free case), it is possible to �nd with a linear pre-
diction method, a l-variate FIR transfer function g(z) =

(g1(z); :::; gl(z))
> of degree N with [g(z)>] y(n) = s(n). This

is indeed satis�ed under the identi�ability condition ([2]).
Now, the question is to understand the behavior of LP for
a channel of the form h(z) = h0(z)h(z).

The key result is given by the following lemma which con-
nect the scalar innovation of the input sequence [h0(z)] s(n)

to the l-variate innovation process of the observation vector
y(n).

Lemma 2 Under the hypotheses A-1,3, the innovation of

the process y(n) is given by,

iy;N (n)=h(0) iv;N0
(n) (9)

where h(0) is a l�length vector and where iv;N0
(n) is the

innovation of the process v(n) = [h0(z)] s(n).

Proof: Let Hn�1;N (y) = spanfy(n�l) 2 Rq; 1 � l � Ng. The
l-variate innovation process over a past of dimension N is
de�ned as,

iy;N (n)=y(n) � ŷN (n) = y(n) � y(n)=Hn�1;N (y)

Since �N (h ) is a full column rank matrix, there is a matrix
G of dimension N0 � Nl such that G�N (h ) = IN0

, con-
sequently if we note VN0

(n) = GYN (n) = �N0
(h0) SN+Q(n)

which is a N0-variate process then,
Hn;N (y) = Hn;N0

(v) (10)

Moreover, we can split Hn;N0
(v) in two subspaces such that

Hn;N0
(v) = fv(n)g�Hn�1;N0�1(v) . Note, however, that the

subspaces are not orthogonal. So, the projection of y(n) on
Hn;N (y) leads to the estimation,

ŷN (n)=h(0) v̂N0
(n) + y(n)=Hn�1;N0�1(v)

Herein, v̂N0
(n) denotes a scalar process estimation. Conse-

quently, one can writes the l-variate innovation process of
the observation as,

iy;N (n)=y(n) � h(0) v̂N0
(n)� y(n)=Hn�1;N0�1(v)

We know on the other hand that,

y(n) = h(0)v(n) +

Q�Q0X
k=1

h(k)v(n � k)

Futhermore, we may noticed that y(n)=Hn�1;N0�1(v) is
reduce to the subspace y(n)=spanfv(n � k); 1 � k � Q�Q0g.
In other words,

y(n)=Hn�1;N0�1(v) =

Q�Q0X
k=1

h(k)v(n� k)

So we get,
iy;N (n)=h(0)v(n)� h(0) v̂N0

(n)

iy;N (n)=h(0) iv;N0
(n)

222

According to the previous lemma, now, we are able to con-
nect the l-variate innovation formulation to the linear �lter
prediction.

Indeed, since v(n) = [h0(z)] s(n) its innovation process is
given by,

iv(n) =

�
1

h0(z)(�)

�
v(n)

where h0(z)
(�) denotes le minimum-phase factorization of

h0(z). In particular, if we introduce g0(z) the FIR scalar
predictor associated to the innovation iv;N0

(n), one may see

g0(z) as an truncature of the transfer function 1=h
(�)

0 (z).
Thus,

iv;N0
(n) = [g0(z)]v(n) =

N0�1X
k=0

g0(k) z
�k

where g0(0); :::; g0(N0�1) denotes the coe�cient of the scalar
prediction �lter g0(z). Accordingly, the l-variate innovation
process of y(n) is deduced from the l�l prediction �lter G(z)
such as,

iy;N (n) = [G(z)] y(n) = [ Il +

N�1X
k=1

G(k) z�k ] y(n)

where G(1); :::;G(N�1) denotes the l � l coe�cient of the
prediction �lter G(z). According lemma 2, if we multiply
the expression (9) at left by h(0)>, we get:

h(0)> [G(z)]

kh(0)k2
h(z) = g0(z) (11)

if we denotes g(z) = h(0)> [G(z)]=kh(0)k the left inverse of
h(z), the linear prediction formulation turns to the expres-
sion,

g(z)>h(z) = g0(z) (12)

Actually, the interesting conclusion is that in all cases the
linear prediction method leads to a minimum phase factor-
ization ! When h0(z)=1 the condition h(z) 6=0 for all z imply
that h(z) is a minimum-phase transfer function leading g(z)

to be also minimum-phase. The expression (12) generalizes
in some sense this result when h(z)=h0(z)h(z) (with h0(z) a
scalar transfer function). In particular, if h0(z) is minimum-
phase, for N large enough, the "left inverse" estimation of
h(z) turns to the expression g(z) = g(z)=g0(z) ' g(z)h0(z)�1.

Futhermore, under the minimum phase assumption for
h0(z), one can recover approximatively the taps of h with
the estimation procedure ([2]):

h(k) = E[y(n)
�
[g(z)>] y(n�k)

�
] (13)

Indeed, a straigthforward calculus, gives:

E[y(n)
�
[g(z)>]y(n�k)

�
]=h(z) g(z)>h(z)h0(z)E[s(n)s(n� k)]

According to the relation (12), we have g(z)>h(z)h0(z) � 1
and from A-3, [h(z)] E[s(n) s(n�k)] = h(k) �(k).

Simulations: Next, we give an example of the linear pre-
diction approach based on the algorithm proposed in ([2])
for a 2-dimentional channel h(z) = h0(z)h(z) where h(z) is
of degree Q = 2 and h0(z) of degree Q = 1. The input
sequence s(n) is de�ned by a BPSK sequence. The sim-
ulations were performed in noise-free condition with exact
statistics and N=4. In Table I, we give the zeros locations
of h(z).



zeros locations of h(z)

h1(z) -1.10 0.60

h2(z) 0.80 0.30
Table I

We investiagte the LP approach for tree di�erents transfer
function h0(z) de�ned in the Table II (�rst row).

zeros locations

case: (a) (b) (c)
h0(z) 0.20 -0.90 1.50

ĥ0(z) 0.20 -0.84 0.66

Table II

For the tree channels (a,b,c) the irreducible part h(z) is ex-
actly estimated. That is why, we give only the estimation
zeros locations estimation of the scalar fonction h0. The
results given in the Table II (second row), shown that the
channel estimation is all the more accurate that the com-
mon zeros are inside and "far" from the unit circle.

5. CONSTANT MODULUS CRITERION

For BPSK sequence, the Fractionally-Spaced Constant
Modulus (CM) equalization is based on the minimization
of the criterion,

C(g(z)) = E[
�
( [g(z)>] y(n) )2 � 1

�2
] (14)

In the case of lack of disparity it was shown in [9] that
h(z) is perfectly equalized and that what remains in the
equalization of the non-fractional h0(z). Thus, the proper
initialization of the corresponding CMA which leads to an
appropriate delay � and to avoid eventual local minima is
still a critical problem that has not be solved.
For a long enough equalizer N and for a small enough �2

the global minima of CM are close to the optimal Wiener
solution. This result was shown in [7].
To get a better insight of the CM behavior for large N

let us consider the comparison with Wiener equalizer. Al-
though that the CM and Wiener receiver seems very dif-
ferent, it is interesting to notice that there is a connection
between the both approches. Indeed, the optimal Wiener
receiver solutions is an IIR multi-variate transfer function
of the form,

g(z) = z��
h(z)

kh(z)k2 + �2
(15)

here, kh(z)k2 denotes the scalar transfer function
h(z)>h(z�1). In noise-free conditions, according to the
model (2), the solution (15) is exactly a global minimum
of the CM criterion. Consequently, for a large enough de-
gree of equalizer N , and a small enough �2 one can see that
the CM criterion consists in some sense in pseudo-inverting
the Bezout idendity (see [7] for more details),

h(z)> g(z)=
z��

h0(z)
(16)

If we compare the expression (16) to le LP approach (12)
one can see that using implicit high order statistics CM cri-
terion minimization still performs reasonable equalization
for any h0(z) (even if it is not a minimum-phase transfer
function).

Finally, we may remark that a possible estimation of h(z)
can then be done by using a \delayed" version of (13) or by
solving at \best" the linear system � (g)>h=f . Because of
the CM robstness to lack of disparity, the resulting estimate
may be better than a direct estimate such as by SS approach
(see simulations).

6. COMPARATIVES SIMULATIONS

Next we give a comparison of the di�erent methods in
terms of channel estimation (under exact statistics). The
simulations were performed with a 2-dimensional channel
h(z) of degree Q= 4 driven by a BPSK sequence. Herein,
h0(z) = z+3:2 is a non-minimum phase transfer function.
Consequently, h0(z) is recovered only by the CM criterion
minimization (with here �=9) (see Table III). We set N=4

at SNR= 30dB.

Zeros locations of the channel

h1(z) 4.00 1.40 -0.80 -3.20

h2(z) 2.30 0.30 1.90 -3.20

Zeros location estimation
SS h1(z) 4.00 1.40 0.80 -1.92

h2(z) 2.30 1.90 0.30 -1.92

PL h1(z) 4.00 1.40 -0.80 -0.31

h2(z) 2.30 0.30 1.90 -0.31

CM h1(z) 3.98 1.40 -0.80 -3.19

h2(z) 2.28 0.30 1.91 -3.20

Table III
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