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ABSTRACT

Nonlinear system identi�cation involves selecting the order

of the given model based on the input-output data. A boot-

strap model selection procedure which selects the model by

minimising bootstrap estimates of the prediction error is

developed. Bootstrap based model selection procedures are

attractive because the bootstrap observations generated for

the model selection can also be used in subsequent inference

procedures. The proposed method is simple and computa-

tionally e�cient.

1. INTRODUCTION

Nonlinear system identi�cation has been receiving increased

interest recently due to the need to more accurately char-

acterise real-life phenomena. A basic problem in nonlinear

system identi�cation lies in the judicious selection of the

order of the given model so as to avoid the e�ects of under

or over parametrisation [5]. Several model order selection

procedures exists for the case where the relationship be-

tween the input and the output process is linear. Popular

techniques are Akaike's information criterion [1], Rissanen's

minimum description length criterion [7], and Hannan and

Quinn's criterion [4]. These criteria are suggested in the

context of estimating the parameters p and q of an autore-

gressive moving average process of order (p; q). Experimen-

tal as well as theoretical results indicated that the model

criteria do not yield de�nitive results. For example, it is

known that Akaike's criterion is not consistent. On the

other hand, Rissanen's and Hannan and Quinn's criteria

are consistent [3]. In the absence of any prior information

regarding the physical process that resulted in the data, one

is often left with trying di�erent model orders and di�erent

criteria and, ultimately, interpreting the di�erent results.

In this paper we describe a procedure for selecting the

order of a class of nonlinear models using the bootstrap [2, 9,

10]. Bootstrap procedures for model selection have recently

attracted the attention of statisticians [8], but have not seen

much application among signal processing practitioners.

Besides the theoretical and empirical properties of boot-

strap selection procedures such as the ones discussed in [8],

there are good reasons to use a bootstrap model selection

procedure. Bootstrap methods are simple and computa-

tionally e�cient. If one uses a bootstrap approach for the
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model selection and for the subsequent inference, then the

bootstrap observations generated for model selection can

also be used in the inference procedure. Thus, the model

order selection procedure can be done at no extra compu-

tational cost.

Our approach, presented in Section 3, is demonstrated

on the Hammerstein series but can be easily extended to

Volterra series or other nonlinear models. An outline of the

paper follows.

In Section 2, we brie
y discuss the Hammerstein series

used in this application. Section 3 introduces our approach

to selecting the model order of the Hammerstein series us-

ing the bootstrap. In Section 4, we demonstrate our ap-

proach on simulated data and give some results on the em-

pirical probabilities of selecting various models, before we

conclude.

2. THE HAMMERSTEIN SERIES

The Hammerstein series was introduced recently [6] as a

model for identi�cation of nonlinear systems driven by non-

Gaussian stationary input signals. The Hammerstein series

is de�ned by the input-output relationship

Y (t) =

1X
�=�1

g1(� )X(t� �) +

1X
�=�1

g2(� )X(t� �)
2

+

1X
�=�1

g3(�)X(t� � )
3
+ � � � ; (1)

where X(t), Y (t), t = 0;�1;�2; : : :, are the input and

output of the nonlinear system, respectively, assumed to

be stationary, and the functions fgn(�)g, n = 1; 2; : : :,

� 2 Z, characterise the linear, quadratic, and higher order

responses of the system, and are called the Hammerstein

kernels. The Hammerstein series in (1) is depicted in Fig-

ure 1.

We shall consider a Hammerstein series of order p and

�nite memory m, i.e.,

Y (t) =

pX
k=1

mX
�=0

gk(� )X(t� �)
k
+ "(t); (2)

where we have allowed for a stationary noise process "(t),

t = 0;�1;�2; : : :, which we assume to be a sequence of

independently and identically distributed (i.i.d.) variates.

We further assume that X(t) and "(t) are independent for

all t.
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Figure 1. A schematic of an nth order Hammerstein series.

2.1. Estimation of the Hammerstein Kernels

Suppose we are given observations Y (t), X(t), for t =

0; : : : ; T � 1. Given the parameters p and m, a solution

for the kernels is obtained as follows.
Let

X
�k=

0
BB@

X(0)k X(�1)k � � � X(�m)k

X(1)k X(0)k � � � X(1 �m)k

.

.

.
.
.
.

. . .
.
.
.

X(T � 1)k X(T � 2)k � � � X(T � 1�m)k

1
CCA ;

(3)

for k = 1; : : : ; p, be a matrix of size T � (m + 1). The

notation X�k mean that each element in the matrix is

raised to the kth power. Let Y = (Y (0); : : : ; Y (T � 1))0

and " = ("(0); : : : ; "(T � 1))0. De�ne for each k = 1; : : : ; p

the parameter vector

gk = (gk(0); : : : ; gk(m))
0
:

Given X(t) and Y (t), for t = 0; : : : ; T �1, one can write (2)

in the following vector form

Y =
�
X
�1

X
�2
� � � X

�p
�
0
BB@

g
1

g
2

...

gp

1
CCA+ "; (4)

which is equivalent to

Y =Xg + "; (5)

where X is a T �(m+1)p block matrix with elementsX�k

and g is the (m+1)p-vector valued parameter with elements

gk(�), � = 0; : : : ; m, and k = 1; : : : ; p.

The least-squares estimate (LSE) of g is then obtained

from

ĝ =
�
X
0
X
�
�1

X
0
Y (6)

provided the inverse exists. It is worth noting that the

nonlinear system model can be expressed now as a linear

one in the unknown parameter g.

2.2. Model order selection

In practical situations neither the model order p nor the

memory m is known. We wish to select a subset of the

parameters fgk(�)g, � = 0; : : : ;m, k = 1; : : : ; p, to �t the

Hammerstein series to X(t) and Y (t).

The problem is the following: given Y (0); : : : ; Y (T � 1)

and X(0); : : : ; X(T � 1) estimate the parameters p and m.

This can be formulated as a model selection problem in

which we select � from f1; : : : ; pg and � from f0; : : : ;mg

and each � and � corresponds to the model in (2) of order

� and memory �, i.e.,

Y (t) =

�X
k=1

�X
�=0

gk(� )X(t� �)
k
+ "(t):

Under � and �, we have

g�� =

0
BB@

(g1(0); : : : ; g1(�))
0

(g2(0); : : : ; g2(�))
0

...

(g�(0); : : : ; g�(�))
0

1
CCA =

0
BB@

g
1

g
2

...

g�

1
CCA ;

where gk = (gk(0); : : : ; gk(�))
0
, k = 0; : : : ; �. Assuming the

inverse exists, the parameter g�� is estimated by the LSE

ĝ�� =
�
X
0

��X��

�
�1

X
0

��Y ; (7)

where X�� = (X�1

� X�2

� � � � ;X��
� ), and X�k

� is as (3)

replacing m by �, for k = 1; : : : ; �. In the following section,

we present a method based on the bootstrap that will select

� and � by minimising bootstrap estimates of the prediction

error.

3. A BOOTSTRAP APPROACH FOR MODEL

SELECTION

We assume that � = p and � = m. The optimal model is

(�0; �0)=maxf(k; �) : 1 � k � p; 0 � � � m; gk(�) 6= 0g:

Let "�(t), t = 0 � 1;�2; : : : be i.i.d. from the distribution

putting mass T�1 tor
T

LT

 
r̂(t)�

1

T

T�1X
t=0

r̂(t)

!
; t = 0: : : : ; T � 1 ;

where

r̂(t) = Y (t)�Xpm(t)ĝpm;

with Xpm(t) =
�
X(t) � � �X(t�m)X(t)2 � � � X(t�m)2

� � � X(t)p � � �X(t�m)p) is the tth residual under the

largest model � = p and � = m.

By multiplying the residuals by the factor
p
T=LT one

increases the variablity among the bootstrap observations

and achieves consistency, i.e.,

lim
T!1

Prf(�̂T;LT ; �̂T;LT ) = (�0; �0)g = 1;

provided that LT is such that limT!1
LT
T

= 0 and

limT!1 LT =1.

The bootstrap analog ĝ��� of ĝ�� is de�ned in (7) with

Y (t) replaced by

Y �(t) =

�X
k=1

�X
�=0

ĝk(�)X(t� � )k + "�(t); (8)



t = 0; : : : ; T �1. The parameters selected by the bootstrap,

denoted by �̂T;LT and �̂T;LT , are then the minimiser of

�̂T;LT (�; �) = E�

T�1X
t=0

 
Y (t)�

�X
k=1

�X
�=0

ĝ
�

k(�)X(t� �)
k

!2

T

(9)

over � = 1; : : : ; p and � = 0; : : : ;m, where E� is the asymp-

totic expectation conditioned on the input-output data [2].

A detailed procedure for parameter selection is given in Ta-

ble 1.

Table 1. Bootstrap-based selection procedure for the

parameters of a Hammerstein series model.

1. Select � = �max � = �max, and �nd the estimate
ĝ�� of g�� and compute

Ŷ (t) =

�maxX
k=1

�maxX
�=0

ĝk(�)X(t� �)
k

2. Compute the residuals r̂(t) as

r̂(t) = Y (t)� Ŷ (t); t = 0; : : : ; T � 1:

3. Rescale the empirical residuals

~r(t) =

r
T

LT

 
r̂(t)�

1

T

TX
t=1

r̂(t)

!
;

where LT is such that limT!1
LT
T

= 0 and
limT!1 LT =1, e.g. LT = T 
 , 0 < 
 < 1.

4. For all 1 � � � �max and 0 � � � �max

(a) calculate ĝ�� and Ŷ (t) as in step 1.

(b) Using a pseudo-random number generator,
draw independent bootstrap residuals ~r�(t)

with replacement, from the empirical distribu-
tion of ~r(t).

(c) De�ne the bootstrap output

Y
�
(t) = Ŷ (t) + ~r

�
(t):

(d) Using Y �(t) as the new system output, com-
pute the least-squares estimate of g�� , ĝ

�

��,
and calculate

Ŷ
�
(t) =

�X
k=1

�X
�=0

ĝ
�

k(�)X(t� �)
k

and

SSE�T;LT (�; �) =
1

T

T�1X
t=0

�
Y (t)� Ŷ

�
(t)
�2

:

(e) Repeat steps (b){(d) a large number of times
(e.g. 100) to obtain a total of B bootstrap
statistics

SSE
�

T;LT
(�; �)1; : : : ; SSE

�

T;LT
(�; �)B ;

and estimate the bootstrap mean-square error

�̂T;LT (�; �) =
1

B

BX
i=1

SSE�T;LT (�; �)i :

5. Choose � and � for which �̂T;LT (�; �) is a mini-
mum.

4. SIMULATION RESULTS

We now demonstrate the method using two examples of

the Hammerstein series. Consider �rst Kim and Powers'

example [5], where the dynamic nonlinear system was given

by

Y (t) = �0:64X(t)+X(t�2)+0:9X(t)
2
+X(t�1)

2
+"(t) :

(10)

Here "(t) is an additive, i.i.d. non-Gaussian (double expo-

nential) noise process, and "(t) and X(t) are independent.

The signal to noise ratio at the output of the system was ap-

proximately 3 dB. Comparing the models in (10) and (2),

it is clear that p = 2 and m = 2 represents the optimal

parameters. We generated a white Gaussian noise input

sequence of length T , and evaluated the output using the

Hammerstein series as in (10). Using the bootstrap based

procedure of Table 1, we found

�̂T;LT (�; �) =

0
BB@

8:68 8:80 8:34 8:54 8:77

5:29 2:01 1:70 2:05 2:32

5:01 2:10 2:34 2:37 3:14

4:62 2:35 2:81 3:87 7:45

4:75 3:00 3:07 4:51 12:94

1
CCA
(11)

and

�̂T;LT (�; �) =

0
BB@

12:59 12:37 12:01 11:87 11:69

5:26 1:80 1:02 1:08 1:17

5:28 1:88 1:09 1:22 1:33

5:06 1:92 1:24 1:36 1:43

5:11 1:91 1:31 1:40 1:53

1
CCA
(12)

for T = 32 and T = 64, respectively, where �max = 5 and

�max = 4.

The bootstrap based method clearly shows the optimal

solution, where the minimum of �̂T;LT (�; �) corresponds

to p = 2 and m = 2 (in bold). Note particularly how

the estimated mean-square error increases for model orders

above p = 2 and m = 2. In this case the parameter 
 was

set to 0.51.

We have evaluated also the empirical probability of se-

lecting a particular model for the example given in (10).

For 100 independent runs, the empirical probability was (in



percentages)

P̂r =

0
BB@

6 0 1 0 0

11 7 43 8 3

0 0 8 1 3

0 0 2 1 1

0 0 3 1 1

1
CCA (13)

and

P̂r =

0
BB@

1 0 0 0 0

0 2 94 0 0

0 0 3 0 0

0 0 0 0 0

0 0 0 0 0

1
CCA (14)

for T = 32, and T = 64, respectively, where

P̂r = Prf(�̂T;LT ; �̂T;LT ) = (�0; �0)g:

Consider another example of the Hammerstein series, where

the nonlinear dynamic is given by

Y (t) = 0:4X(t) + 0:3X(t� 1) + 0:2X(t� 2)

+ 0:1X(t� 3) +X(t)
2
+X(t� 1)

2

+ 0:5X(t� 2)
2
+ 4X(t� 3)

2
+ 0:5X(t)

3

+ X(t� 1)
3
+ 0:5X(t� 2)

3
+X(t)

4
+X(t� 2)

4

+ "(t):

In this case p = 4 and m = 3. We have repeated the

bootstrap procedure for �max = 7 and �max = 6 with all

other settings as in the previous example. The empirical

probabilities of selecting a particular model (evaluated over

100 runs) for T = 64 were

P̂r =

0
BBBBBB@

0 0 0 0 0 0 0

2 0 0 2 1 0 0

0 0 1 0 0 0 0

0 0 0 83 4 0 0

0 0 0 2 2 0 0

0 0 0 2 0 0 0

0 0 0 1 0 0 0

1
CCCCCCA

: (15)

Discussion. In the test we ran, it was clear that the

method proposed performs well. Over 100 replications, the

empirical probability that the method selects the true or-

der was close to 1, even when the data length was only

T = 64. Increasing the data length improved the perfor-

mance as long as the choice of 
 was less than 1. If 
 was

close or equal to one, we observed that the method becomes

inconsistent. This result is in accordance with what was dis-

cussed by Shao in [8]. One may argue that the choice of LT
may be a problem in practical situations. Some guidelines

as to the choice of LT in linear regression are given in [8].

In our simulation we did not observe any problem with the

choice of 
, except where 
 was close or equal to one and T

is large. We also ran the simulations with di�erent models

and di�erent noise levels (lower SNR). Again, the perfor-

mance was promising.

The procedure presented in this paper was developed for

the Hammerstein series. This is by no means a limitation.

If one chooses to use a Volterra series one would still be able

to formulate a linear regression like (5) (see for example [5]).

The bootstrap model selection procedure depicted in Ta-

ble 1 can be altered so as to draw much less than T

bootstrap observations. The bootstrap sampling procedure

is consistent if we draw LT bootstrap observations with

limT!1 LT ! 1 and limT!1 LT =T ! 0 [8]. Tests with

this technique were performed and promising results were

obtained. An extensive analysis has not been performed as

yet and results will be presented elsewhere.

5. CONCLUSIONS

We have proposed a procedure for determining the order

and the memory of a Hammerstein series using the boot-

strap. The method is based on minimising bootstrap esti-

mates of the prediction error. We have also presented some

simulation results based on a nonlinear model used in [5]

which can be represented by a Hammerstein series. At very

low SNR and with only a small size of data points we have

also been able to achieve a high probability of selecting the

true order, irrespective of the statistical distributions of the

input and the noise time series. The method presented is

not restricted to Hammerstein series but can be easily ap-

plied to other nonlinear systems.
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