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ABSTRACT

This communication presents a new approach to blind

equalization of a FIR channel. It is based on a bounded-

error assumption and takes into account the fact that

the input signal is in a �nite alphabet. We show that

even in the noisy case, identi�ability can be guaranteed

in �nite time, provided that the support of the noise

density is suitably bounded.

1. INTRODUCTION

The problem of equalization is of considerable inter-

est in digital communication. Given a received output

sequence, one has to determine the transmitted input

sequence. If a training sequence is available, it permits

to identify the channel, and then to recover the input

data. To increase the capacity of the channel, it is of

interest to remove this training sequence, which corre-

sponds to blind equalization. This issue can be solved

using High Order Statistics or Cyclic Statistics (see e.g.

[2]). Instead of doing so, we choose to exploit the �nite

size of the input symbols set denoted by

L = f�(2M � 1); : : : ;�3;�1; 1; 3; : : : ; 2M � 1g ; (1)

this real symmetric set being not restrictive, see [9].

Let us assume that the transmission channel is a

Finite Impulse Response �lter with known length p.

The observation at time k is given by

yk =

pX
i=1

��iak�i+1 + �k = xT
k
�� + �k (2)

with ai the input symbols, �� 2 IRp the unknown true

value of the channel parameters, xk the kth regressor,

xk = (ak; ak�1; : : : ; ak�p+1)
T ; ai 2 L 8i ; (3)

and �k an error term.

The equations (2) obtained for k between 1 and N

can be put under the matrix form

yN1 = XN

1
�� + �N1 ;

where XN

1 is a Toeplitz matrix containing the input

sequence. Following the de�nition used in [1], we shall

say that the input sequence is identi�able if it can be

recovered up to a multiplicative scalar from the output

sequence fykg.

In a noise free context, identi�ability is shown in [1]

to depend on the rank of XN

1 . We show in this pa-

per that identi�ability can also be guaranteed in �nite

time in presence of noise, and with less restrictive as-

sumptions, provided the support of the noise density is

suitably bounded.

Paper is organized as follows : section 2 is devoted

to estimation in presence of bounded error, section 3

to blind equalization in this case. Section 4 deals with

identi�ability. We then present some simulation before

concluding.

2. BOUNDED-ERROR ESTIMATION

In data communication, the boundness of errors is gen-

erally not taken into account, although it is a realistic

assumption. Let us assume that the errors �k are such

that

8k ; k�kk � � � e ; (4)

where � de�nes the (unknown) true support of the noise

density, whereas e is a known upper bound for �. The

likelihood set associated with observations yN1 and re-

gressors XN

1 is then de�ned as

S(XN

1 ) = f� 2 IRp = jyk � x
T

k
�j � e ; k = 1; : : : ; Ng ;

(5)

where the dependence of S in yN1 is omitted.

Parameter bounding, which aims at characterizing

the set S(XN

1 ), has received a growing attention in the



last decade (see, e.g. [7, 5]). The situation considered

here is not classical for parameter bounding in several

aspects. First, since the alphabet L is �nite, the re-

gressors belong to a �nite set,

� = f�1; : : : ; �mg ; �i 6= �j for i 6= j : (6)

This will greatly facilitate the characterization of the

likelihood set. Second, the error bound e is not as-

sumed to correspond to the exact support of the den-

sity of the �k's, and the convergence of S(XN

1 ) will be

considered in the case e � �.

2.1. Construction of the likelihood set

Since the model structure (2) is linear with respect to

the parameters, the likelihood set S(XN

1 ) given by (5)

is a polytope (provided rank(XN

1
) = p) that can be

constructed recursively, see [8, 4]. At each step k, the

vertices v that do not satisfy yk � e � xT
k
v � yk + e

are removed, and new ones are constructed along the

edges joining a removed vertex with an adjacent one

which is kept. Since the alphabet is �nite, the com-

plexity of S(XN

1 ) can be bounded. For instance, when

L = f�1; 1g (that is when M = 1), S(XN

1 ) is a pal-

lelotope with only 2p vertices, whatever the value of N

(provided rank(XN

1 ) = p).

2.2. Convergence of the likelihood set

Contraction of S(XN

1 ) to a point (similar to the notion

of consistency in classical point-estimation) is estab-

lished in [6] under rather general hypotheses, assuming

that e = � and that � reaches its bounds in�nitely of-

ten (see H1 below). However, assuming e = � does

not seem realistic for practical applications. Indeed,

S(XN

1 ) will almost surely vanish after a �nite number

of iterations if �k > e may happen. For that reason,

we take here e � �. Assume that f�k;xkg are random

variables over a �xed probability space, satisfying re-

spectively (4) and (6), with Bk = �(f�t;xtg; t � k) the

generated �-algebra. Let P (A) denote the probability

of the event A. Following an approach similar to [6] we

prove that the likelihood set converges to a �xed poly-

tope centered at �� assuming the following hypotheses:

H1: The sequence f�kg satis�es: 9C1 > 0 j 8k >

0 ; 8j = 1; : : : ;m ; 8u > 0 small enough

P (�� �k < u j Bk�1;xk = �j) � C1u a.s.

P (�+ �k < u j Bk�1;xk = �j) � C1u a.s.

H2: The �j's span IRp and 9C2 > 0 j 8k > 0 ; 8j =

1; : : : ;m ; P (xk = �j j Bk�1) � C2 a.s.

H3: The sequence f�k;xkg is asymptotically indepen-

dent.

The theorem is then,

Theorem 1 Under hypotheses H1 and H2, the likeli-

hood set S(XN

1 ) converges to the polytope

�S(X1
1 ) = f� 2 IRp j

�(e � �) � �T
j
(� � ��) � (e � �) ; j = 1; : : : ;mg ;

in the following sense:

8� =2 �S(X1
1 ) ; 9�(�) > 0 j

8k > 0 ; P (jxT
k
� � ykj > e) > �(�) ;

that is all � not in �S(X1
1
) is excluded from S(Xk

1
) with

probability at least �(�). If, moreover, H3 is satis�ed,

then

8� =2 �S(X1
1 ) ; 9 a.s. N0 j 8N � N0 ; � =2 S(XN

1 ) :

3. BLIND BOUNDED-ERROR

EQUALIZATION

Assume now that the true sequence of regressors fxkg

used to generate the data (2) is unknown, the issue

being to recover it, as well as the parameters ��. We

shall denote a guessed sequence of regressors by fx̂kg,

also assumed to belong to a �nite set � as de�ned in

(6). We say that a sequence X̂
N

1 is consistent with

the data yN1 if S(X̂
N

1 ) 6= ;. One wishes S(X̂
N

1 ) to

be empty for N larger than some N0 when X̂
N

1 does

not coincide with XN

1 . In fact, we shall see that this

requirement is too strong in the general case, but that

depending on the magnitude of the errors, only some

particular sequences of regressors are consistent with

the observations. For any X̂
N

1 , de�ne the sets

I
N

1 (jji) = fk 2 f1; : : : ; Ng = x̂k = �j;xk = �ig ;

�N

1 (j) = [i2f1;::: ;mgI
N

1 (jji) ;

We shall require that the set � of regressors and the

true value �� of the parameters satisfy conditions of the

following type:

H4: 9
 > 0 = 8(i; j) 2 f1; : : : ;mg2 ;

i 6= j ) j(�i � �j)
T ��j > 
 :

Next theorem concerns the case where each observation

can be associated with a unique regressor without error.

Theorem 2 Assume that H4 is satis�ed with 
 > 2(e+

�) and that each �i appears at least once in xN1 , then

S(X̂
N

1 ) 6= ; ) 8j 2 f1; : : : ;mg ; �N

1 (j) = I
N

1 (jj� (j)) ;

with � (:) a permutation of f1; : : : ;mg.



This means that consistent guessed sequences corre-

spond to permutations of the true sequence. It also

shows that even in the presence of noise, the number

of sequences fx̂kg consistent with the observations may

remain bounded. Note that this bound may be quite

large. Indeed, when the regressors are given by (3)

with the alphabet (1) there might be (2M )p! consis-

tent sequences. However, by exploiting the structure of

the set (6) corresponding to the �nite alphabet (1), we

shall see in Section 4 that 
 > 2(e+ �) in H4 is already

su�cient to guarantee identi�ability in the presence of

bounded noise when the input sequence is rich enough.

Consider now the case of larger errors, with 2(e +

�) > 
 > 2e. Next theorem states that a result similar

to that of Theorem 2 will still hold almost surely for a

�nite N .

Theorem 3 Assume that H4 is satis�ed with 
 > 2e,

that exist (i; j; l) 2 f1; : : : ;mg3, i 6= l, such that 9k1 �

1; k2 � 2 with xk1
= �i ; xk2 = �l and x̂k1 = x̂k2

=

�j, and that H1, H2, H3 are satis�ed, then

9a.s. N0 j 8N > N0 ; S(X̂
N

1 ) = ; :

This means that all sequences not corresponding to per-

mutations of the true sequence are almost surely not

consistent after a �nite number of observations.

Even in the rather favorable case 
 > 2e, the aver-

age number of guessed consistent sequences for a given

true sequence increases very fast with N (although

much slower than the total number of possible sequences

mN ), due to the fact that deterministic discrimination

is impossible. However, next theorem presents a bound

on the probability P (N ) that a randomly chosen se-

quence X̂
N

1 will be consistent with a random sequence

XN

1 and shows that mNP (N ) tends to zero exponen-

tially fast as N increases when 
 > 2(e+�=3) when the

�k's are uniformly distributed in [��; �], which comple-

ments the result in Theorem 3.

Theorem 4 Assume that the sequences f�kg and fxkg

are independent, the distribution of the xk's is uniform

over �, and the distribution of the �k's is symmetric,

that H4 is satis�ed with 
 > 2e, and that the x̂k's cor-

respond to an i.i.d. sequence over �, independent of

f�kg and fxkg, then

mNP (S(X̂
N

1 ) 6= ;) < �(m)�N ; (7)

with �(m) not depending on N and � depending only

on the distribution of the �k's. When, moreover, �k is

uniformly distributed in [��; �] with 
 > 2(e+�=3), then

� < 1 in (7).

After theses preliminary results, we now set the

most important result of this communication. We show

that the true input sequence will be recovered up to its

sign in �nite time in the presence of suitably bounded

errors if the alphabet has the form (1).

4. IDENTIFIABILITY

Due to the form of the regressors (3) and alphabet (1),

the sequence fxkg lives on an oriented DeBruijn graph.

The identi�ability issue then consists in locating the

process xk on the graph (up to sign symmetry) when

values xT

k
�� are observed.

Theorem 5 Assume that all states are distinguishable

(i.e. H4) and that the input sequence is such that at

time K the process xk has visited:

� 2 loops, i.e. xT

ki

�� = xT
ki+1

��, i = 1; 2, such that

jxT
k1

��j 6= jxT
k2

��j;

� all transitions on the shortest path between these

two loops (these transitions do not need be visited

consecutively)

then the input sequence is identi�able at time K.

Note that under H2 the input sequence is a.s. identi�-

able in �nite time and that H4 is much less conservative

than the conditions used in [9, 1]. An important con-

sequence of Theorem 5 is that identi�ability can also

be guaranteed in the presence of errors, provided H4 is

satis�ed with a suitable value of 
.

Corollary 1 a/ Assume that H4 is satis�ed with 
 >

2(e+ �) and that the input sequence satis�es the condi-

tions of Theorem 5, then the input sequence is identi-

�able at time K.

b/ Assume that H4 is satis�ed with 
 > 2e, then

H1, H2 and H3 imply that the input sequence is a.s.

identi�able in �nite time.

5. SIMULATION

We present here a simulation for a �lter of lenght 2.

The (unknown) channel parameters are �1 = �0:3; �2 =

1:5 (noted as a star * in the �gures below). The noise

has a raised-cosinus probability density fonction. The

true bound error is � = 0:05 and the we take as known

upper bound e = 0:29. In such case, H4 is veri�ed.

Figures below illustrate our algorithm : The initial-

ization of the polytope is drawn in dashed line on each

�gure. For the �rst step, we just examine two possi-

bilities (

�
1

1

�
and

�
1

�1

�
). The symmetric ones are not



taking into account because identi�cation is up to a

sign. We then get �gure 1 with two polytopes drawn

in solid lines. Figure 2 represents the second step. Fi-

nally, �gure 3 stands for the 4th step: the algorithm

has then converged and the obtained polytope is the

same as �S(X1
1 ).
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Figure 1: 1st step
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Figure 2: 2nd step
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Figure 3: last step

6. CONCLUSIONS

Some properties of blind equalization in the context

of bounded errors have been dicsussed. An interest-

ing result is that identi�ability can still be guaranteed

in �nite time provided that the bound on the error is

not too large. The excitation conditions on the input

sequence can be used to derive upper bounds on the

expected waiting time for identi�ability. Some simula-

tions have been presented.

Further work will address the problem of joint iden-

ti�cation of the bound on the errors and channel para-

meters through recursive L1 estimation, see [3].
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