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ABSTRACT

Minimizing the Fisher informationmeasure over the set of power

spectrum densities �tting a �nite number of autocorrelation lag

constraints is treated. Due to an explicit control of the derivative

values of the densities, the Fisher information measure produces

a useful smoothing e�ect. The Fisher informationbased estimate

exhibits improved characteristics compared to the maximum en-

tropy approach proposed by Burg. We show that the resulting

power spectrum estimate is positive, and along with the auto-

correlation constraints, satis�es a generalized Riccati di�erential

equation. In general, the true estimate of the power spectrum

may be obtained only by numerically integrating the correspon-

ding boundary value problem. For real time applications, we

therefore propose a fast and numerically stable approximate so-

lution in explicit trigonometric form. Although suboptimal, the

proposed approach has proven to be advantageous especially for


at spectra. The presented theory is veri�ed on simulated exam-

ples.

1. INTRODUCTION

Among the procedures for computing the power spectrum den-

sity S(!) of a discrete stationary process x(t); t 2 Z from a �nite

sequence of autocorrelation lags frk; k = 0; :::;Ng, Burg's ma-

ximum entropy method is the best known and most frequently

treated one [1,2,3]. Because of its theoretical foundation in terms

of the entropy rate of autoregressive processes, the maximum en-

tropy principle was described as one of the most important ana-

lytical results in statistics [4]. For a review and more details see

[5] and [4].

The maximum entropy power spectrum density is de�ned as

�S(!) = maxf
R �

��
� log(S(!))d!jR �

��
cos(k!)S(!)d! = rk;

k = 0; :::;N ;S(!) > 0g
(1)

the rationale of Burg's measure
R
� logS(!)d! being the mini-

mization of spurious or arti�cial information introduced when

extrapolating the autocorrelation coe�cients under the assump-

tion of Gaussian input data. An alternative interpretation, given

by Van den Bos [6], is based on a least-square �tting of an all-

pole model to the available data, and equally assumes a Gaussian

input. Jaynes [4] has shown that the same result can be obtained

if the hypothesis of a Gaussian input is replaced by the Greatest

Number of Ways (GNW) criterion.

One of the drawbacks of Burg's measure is the introduction of

false peaks in the case of 
at power spectra and overparamete-

rization [6,2]. This result is not unexpected regarding the form

(
P

ck exp(�k!))�1 of the spectrum maximizing Burg's mea-

sure, which corresponds in form to the spectra of all-pole (AR)

models.

In this paper we propose the Fisher information measure

If (S) =
R
S(!)02=S(!)d! as the optimization criterion. The

following problem is treated:

�S(!) = min

� R �

��

�
S(!)0

S(!)

�2
S(!) d!

����R �

��
cos(k!)S(!)d! = rk;

k = 0; :::;N ;S(!) > 0

� (2)

Although the Fisher information measure is missing the strong

analytical justi�cation of Burg's entropy, it has some distinguis-

hing features. Its main characteristic is the explicit control over

the derivative of the argument, which has a useful smoothing

e�ect on the resulting spectrum estimate. We shall show that

in particular for processes with 
at spectra, the Fisher informa-

tion provides improved spectrum estimates as compared to the

maximum entropy approach.

In general, computing the Fisher power spectrum estimate un-

der autocorrelation constraints can be done by numerical means

only. We show that for a subclass of autocorrelation sequences

the solution can be obtained in a closed analytical form by sol-

ving a set of linear equations. For general autocorrelation lags,

this analytic expression is only suboptimal, but provides a good

approximation of the true estimate. The computational e�ort

of our method is equal to the cost required to calculate Burg's

maximum entropy solution.

2. INFORMATION MEASURES AND MOMENT

CONSTRAINTS

Minimizing the Shannon information with given moments is a

well treated subject in information theory, see e.g. [7,8,9]. The

corresponding power spectrum estimation problem is

�S(!) = minf
R �
��

S(!) log(S(!))d!jR �
��

cos(k!)S(!)d! = rk;

k = 0; :::;N ;S(!) > 0g
(3)

the solution having the explicit form

�S(!) = C exp(�
NX
k=1

�k cos(k!)) (4)

with the parameters f�k; k = 1; :::; Ng chosen to �t the autocor-
relation constraints. Similarly, in the case of the entropy rate,



i.e. Burg's problem (1), the solution has an explicit form

�S(!) = 1
� NX
k=0


k cos(k!) (5)

where f
k; k = 0; :::;Ng are chosen so that S(!) �ts the auto-

correlation lags. Clearly, any other model has to be compared to

these methods, and should in particular lead to a solution S(!)

with su�ciently explicit form.

The origin of the Fisher information measure dates back to

the work of Fisher [10], where it is introduced in the context of

maximum likelihood estimation. For a parameterized family of

probability densities p(x; �) with a scalar parameter � 2 R the

Fisher information is de�ned as [7]

I(�) = E

�
@ logp(x; �)

@�

�2
= �E

�
@2 logp(x; �)

@�2

�
(6)

which measures the curvature of the log likelihood function in

a neighborhood of the true parameter. In fact, the maximum

likelihood estimate �̂N based on N samples is asymptotically

normally distributed around the true value �� with a variance

I(�)�1, I(�) the Fisher information:

p
N(�̂N � ��) � N (0; I(�)�1); N !1: (7)

If � is a location parameter, i.e. p(x; �) = p(x� �), then

I(�) = If (p) �
Z

(p0=p)2pdx (8)

only depends on the probability density p, measuring the asym-

ptotic e�ciency of the maximum likelihood method.

In the domain of robust statistics pioneered by Huber in 1964

[11], the problem of minimizing If (p) over a class of possible

densities p has been extensively treated [12]. However, surpri-

singly enough the case of moment constraints is not treated at

all. 1 Only the result for constrained second order moment of

the density yielding to a Gaussian density is known.

Minimization of the Fisher information measure of a proba-

bility density function with �rst N moments given was treated

in [13,14] in the context of robust accuracy improvement of time

series parameters. It was shown that the resulting minimumFis-

her density may be obtained with a procedure similar to the one

given below, and in particular, a good suboptimal solution in

explicit polynomial form was obtained. For a complete mathe-

matical treatment of the Fisher problem we refer to [15,16,17].

3. MINIMUM FISHER INFORMATION

SPECTRAL ANALYSIS

Unlike the Shannon or Burg entropies, the Fisher information

measure If (S) measures the shape of the spectral density S(!)

and of its �rst derivative S0(!). What is controlled is in fact

the variance of S0=S with respect to measure dS. Roughly spe-

aking, this means that fast changes of the density with sizable

amplitude introduce a high information rate, and will therefore

be suppressed by the minimization procedure.

Extrapolating the autocorrelation sequence frk; k = 0; :::;Ng
for the lags higher thanN with minimum amount of Fisher infor-

mation of the spectrum S(!) is a convex optimization problem:

1In [7] the minimization of the Fisher information under mo-

ment constraints was emphasized as one of the interesting, but

unsolved problems.

(P) Minimize

If (S) =

Z �

��

�
S0(!)

S(!)

�2
S(!)d! (9)

subject toZ �

��

cos(k!)S(!)d! = rk; S(!) � 0: (10)

3.1. Existence and Uniqueness

For the �nite interval [��; �], Borwein et al. [15,17] have shown

that problem (P ), if assumed to be feasible in the sense that

there exists a function Ŝ(!) � 0, Ŝ 6= 0 �tting the constraints,

has a unique optimal solution �S > 0.

3.2. Optimization Procedure

In order to compute the optimum �S, let us de�ne the Lagrangian

associated to problem (P):

�(S; �) = If (S) +

NX
k=0

�k

�Z �

��

cos(k!)S(!)d! � rk

�
(11)

Evaluating the necessary optimality conditions rS;��( �S; ��) = 0

leads to the Euler-Lagrange equation for (P ). Using the change

of variables

 (!) = �S(!)0=S(!); S(!) = C exp
�
�
Z

 (!) d!
�

leads to the generalized Riccati di�erential equation [18]

2 0(!)�  2(!) +

NX
k=0

�k cos(k!) = 0 (12)

with boundary condition

 (��) =  (�) = 0 (13)

With � and ��k solving (12), (13), the optimal solution �S(!) is

then positive with �S0(��) = �S0(�) = 0. Conversely, the op-

timum �S is even characterized by the fact that it satis�es the

constraints (10), and the corresponding � satis�es the Ricatti

equation (12) with boundary condition (13) [15,16].

3.3. Polynomial Solution

As a heuristic, let us assume that (12), (13) admits a solution in

form of a trigonometric polynomial:

 (!) =

LX
k=1

�k sin(k!) (14)

This implies the solution of (P ) to take the form

S(!) = C exp(�
LX

k=1

�k

k
cos(k!)) (15)

which is obviously positive and satis�es the Neumann boundary

conditions Ŝ0(��) = Ŝ0(�) = 0.

Inserting (14) in (12) shows that (14) can be a solution only if

L = N=2, i.e. the highest constrained autocorrelation lag has to

be of even order (N = 2L) and the total number of constrained

lags is odd.



3.4. Feasibility of the Polynomial Solution

In order for (15) to be the true solution of problem (S), it is

necessary that it satis�es the constraints (10). While in the case

of the Burg's estimate (1), the parameterized solution (5) has

N + 1 degrees of freedom, and a unique solution satisfying the

given autocorrelation lags may therefore be found if the regres-

sion matrix is positive de�nite, the form of the approximate Fis-

her estimate (15) has only L = N=2 degrees of freedom, and

an exact solution of the form (15) will only occur for a subset

of the possible autocorrelation constellations. In the sequel we

shall explore the dependence between the given autocorrelations

frk; k = 0; :::;2Lg and the coe�cients f�k; k = 0; :::;Lg.
For a trigonometric polynomial solution, Eq. (10) has the

following form

rj =

Z �

��

cos(j!)C exp(�
LX

k=1

�k

k
cos(k!))d!; j = 0; 1; :::;2L

(16)

This equation de�nes a mapping F : � ! r between the L-

dimensional space of parameters�, and the 2L-dimensional space

of autocorrelation lags r. The task is now to determine the range

of F in the higher dimensional r-space.

Using partial integration on Eq. (16) the following relation

between r and � is obtained

2krk =

LX
i=1

(rk�i � rk+i)�i; k = 1; :::;2L (17)

This set of 2L equations containsL unknown coe�cients f�k; k =
1; :::;Lg and L unknown autocorrelation lags frk; k = 2L +

1; :::;3Lg.
If we take only the �rst L equations of Eq. (17), the resul-

ting set of linear equations is regular, and the coe�cients � are

uniquely determined. The obtainedmatrix is positive de�nite by

P
i;j
(rj�i � rj+i)�i�j =P

i;j

R
2�i�j sin(i!) sin(j!)S(!)d! =R �P
�i sin(i!)

�2
S(!)d! > 0

(18)

and the regularity follows for � 6= 0. The coe�cients found will

guarantee that the �rst L autocorrelation lags of S(!) are the

given frk; k = 1; :::Lg.
The remaining L equations from (17) contain unknown au-

tocorrelation lags of order higher than 2L. With known �, and

under the assumption�L 6= 0, themissing frk; k = 2L+1; :::;3Lg
are uniquely determined and can be computed from the remai-

ning set of linear equations by consecutive substitution.

In order for the computed values to be valid autocorrelation

lags it is necessary and su�cient that at the same time the de-

terminants Dj = Dj(r0; r1; :::; rj); j = 1; :::;3L of all upper left

square matrices of

2
6666664

r0 r1 : : : r2L+1 : : : r3L
r1 r0 : : : : : :

: : :
. .. : : : : : :

r2L+1 r0 : : : : : :

: : :
. .. : : :

r3L : : : : : : : : : r0

3
7777775

(19)

be nonnegative.

Each Dj is a quadratic function of rj, being nonnegative for

values rmin

j
� rj � rmax

j
, where rmin

j
and rmax

j
are the solutions

of Dj = 0. So, every computed autocorrelation value with lag

higher than 2L has to belong to this interval.

The constraints on the autocorrelation lags discussed so far are

only necessary conditions. In order to verify whether the solution

for S(!) with a polynomial in the exponent is also the optimum

solution, the autocorrelation constraints have to be checked.

3.5. Optimality of the Polynomial Solution

For  satisfying the Riccati equation the Fisher information can

be computed as

If (S) =
R �
��

 2S(!)d! =

2
R �

��
 0S(!)d! +

R �

��

P
2L

k=0
�k cos(k!)S(!)d! =

2If(S) +
P

2L

k=0
�krk

(20)

giving

If (S) = �
2LX
k=0

�krk: (21)

If we assume again that the solution of the Riccati equation is of

polynomial form (15), then on substituting into (12) we get

LX
i;j=1

�i�j sin(i!) sin(j!) = 2

LX
k=1

k�k cos(k!) +

2LX
k=0

�k cos(k!)

(22)

Equating coe�cients of cos(k!) terms we get

�k = �2k�k +
1

2

LX
i;j=1

i�j=k

�i�j �
1

2

LX
i;j=1

i+j=k

�i�j (23)

which gives

If (S) = 2

LX
k=1

k�krk �
NX

i;j=1

�i�j

�
ri�j � ri+j

2

�
(24)

or in matrix form

If (S) = 2~rT� � �TR� (25)

The Fisher information If (S) is now a quadratic function of the

coe�cients � and the minimum will be obtained for

~r = R�: (26)

This expression is identical to the �rst L equations of (17). It

therefore turns out that the approximate S(!) of the form (15),

based on (14), is in fact the solution to minimizing Fisher in-

formation over an approximate set of test functions satisfying

the Ricatti equation with boundary conditions, and the �rst L

autocorrelation constraints (10).

4. SIMULATION EXAMPLES

The newly developed algorithm for minimumFisher information

spectral analysis, given by (15) and (26), was applied to the �rst

20 autocorrelation lags of an MA(1) process. Figure 1 shows

the resulting spectrum together with the true spectrum and the

maximum entropy spectrum computed from the same autocor-

relation lags.
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Figure 1. MA(1) Spectrum Estimate from 20 Autocor-

relation Lags

Minimizing the Fisher information delivers an improved spec-

trum estimate compared to the maximum entropy case. Ob-

viously it su�ers from the same overparameterizationproblem for


at spectrum. However, because of the control of the spectrum

derivative, the resulting spectrumhas a less oscillatory character.

Our experiments have shown that for MA models the positive ef-

fect of the derivative is stronger for low values of the spectrum.

The second example provided on Figure 2 is a spectrum esti-

mate based on the �rst 100 autocorrelation lags of an AR(2)

spectrum with a pair of complex poles near the unit circle. It
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maximum entropy (solid)
minimum Fisher (dashed)

Figure 2. AR(2) Spectrum Estimate from 100 Autocor-

relation Lags

is obvious that the maximum entropy and the minimum Fisher

information estimates behave very similarly. The overparamete-

rized model introduces in both cases 
uctuations around the true

value. Further experiments have shown that theminimumFisher

information spectrum is able to follow the peaks of the spectrum

with precision comparable to the maximum entropy estimate.
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