
A JOINT DETECTION-ESTIMATION SCHEME FOR THE ANALYSIS OF

NOISY COMPLEX SINUSOIDS

Guy Poulalion, Sylvain Morvan

CEA/CESTA,
DEV/FUR, BP2

F 33114 Le Barp, France
Email : guy@goelette.tsi.u-bordeaux.fr

Yannick Berthoumieu, Mohamed Najim

Equipe Signal et Image, ENSERB
av. du Dr Schweitzer, BP 99

F 33402 Talence Cedex, France
Email : bert@goelette.tsi.u-bordeaux.fr

ABSTRACT

Classical high resolution (HR) spectral analy-

sis methods for the estimation of complex si-

nusoids parameters require the a priori knowl-

edge of the number of sinusoids. In most situa-

tions, the correctness of this knowledge is cru-

cial. In this paper, we present a new HR sub-

space method. Its novelty stems from the fact

that the analysis of complex sinusoids is con-

sidered as a joint "detection-estimation" issue.

Simulation results and an application on real

radar signals are presented to illustrate the ef-

�ciency of this method.

1. INTRODUCTION

Numerous High Resolution (HR) subspace methods [1]
have been proposed to estimate either the frequencies
of sinusoids embedded in noise, or the directions of ar-
rivals of sources. They are developed under the hy-
pothesis that the signal subspace rank (ie the number
of sinusoids or sources) is known. They present a lack
of robustness with respect to the misreading of this
information. In real applications however, the signal
subspace rank is generally unavailable. So, one needs,
in a detection step prior to the estimation one, to deter-
mine the number of sources. The estimation accuracy
depends therefore on the detection e�ciency. The de-
tection step which is based on the use of criteria like
Minimum Description Length (MDL) [2], is known to
be less e�cient than subspace methods, particularly for
low SNR. In order to overcome this problem, P. Duvaut
[3] proposes to reformulate the problem of the analysis
of complex sinusoids into a joint "detection-estimation"
issue and derived the Expulse algorithm based on the
deconvolution of the periodogram. The main drawback
of this algorithm is that it requires a careful tuning
on several parameters. In this paper, we propose, in
the framework of the joint "detection-estimation" ap-

proach, a new subspace based method. This method
does not require tuning of any parameters.

2. NOTATION AND PROBLEM

FORMULATION

Let us consider the class of discrete-time processes y(m)
which can be modeled as a sum of p complex exponen-
tials corrupted with a zero-mean white gaussian circu-
lar noise n(m) with variance �2n :

y(m) = x(m) + n(m)

=
pP
i=1

ai exp(j2�f
e
i m+ j�i) + n(m)

where ffei g1�i�p is the set of the frequencies to be
estimated, faig1�i�p the set of constant amplitudes
and f�ig1�i�p the set of initial phases. Consider the
ensemble-averaged correlation matrix Ry of y(m) :

Ry = E
�
y(m)yH (m)

	
= SfeAS

H
fe
+ �2nIL

where

(
y(m) =

�
y(m) ::: y(m � L+ 1)

�T
A = diag

�
jaij2

�
We de�ne the Vandermonde matrix as :

Sfe =
�
s(fe1 ) ::: f (fep )

�
with

s(fei ) =
�
1 exp(j2�fei ) ::: exp(j2�fei (L � 1))

�T
Let us de�ne the signal subspace by :

US = Span
n
(s(fei ))1�i�p

o
Denoting the eigenvalues of Ry in increasing order by
(�i)1�i�p and their associated eigenvectors by (ui)1�i�p,
we have :

,!
�

�i > �2n 1 � i � p

= �2n p+ 1 � i � L

,! Span
n
(ui)1�i�p

o
= US



We de�ne the noise subspace UN as the subspace spanned
by L � p eigenvectors associated to �2n. Since Ry is
an hermitian matrix, US and UN are orthogonal sub-
spaces.

3. A NEW CRITERION

The main idea of the method that we introduce for esti-
mating the frequencies is to identify the best Maximum
Likelihood model w(n) which veri�es :

w(m) =
p(f )P
i=1

p
�2 exp(j2�fim) + ~n(m)

where ~n(m) is a zero-mean white gaussian circular noise
with variance ~�2n and p(f ) is the number of components

of f =
�
f1 ::: fp(f )

�T
.

The powers ~�2n and �2 are de�ned so that the signal
y(m) and the model w(m) have the same powers and
the same ensemble-averaged correlation matrix deter-
minants. Consequently, the criterion we introduce is
the following one. Let us note g the probability density
function of the observation vectors fy(i)g1�i�N�L+1,
the estimated frequency vector is the one which maxi-
mizes the cost function de�ned by :

C(f ) = ln (g(y1; � � � ;yN�L+1; f ))
= �L(N � L + 1) ln(�)
�(N � L + 1) ln (jRw(f )j)� tr(R�1

w (f )HyH
H
y )

where

�
Hy = [y1; � � � ;yN�L+1]

Rw(f ) = �2 (f )SfS
H
f
+ ~�2n (f ) IL

with

�
y(m) =

�
y(m) ::: y(m + L� 1)

�T
Sf =

�
s (f1) ; � � � ; s

�
fp(f )

��
By removing the terms which are independent of f ,

the criterion can be simpli�ed in :

C(f ) = �tr(R�1
w (f )HyH

H
y )

4. ESTIMATION OF �2 AND ~�2N

As mentioned in section 2, ~�2n(f ) and �2(f ) are de�ned
so that the signal y(m) and the model w(m) have the
same powers and the same ensemble-averaged correla-
tion matrix determinants. Using the equality between
the powers of y(m) and w(m), we get :

Py = Pw = p(f )�2(f ) + ~�2n(f )

De�ne �(f ) = �2(f )

~�2n(f )
, we thus can write :

Py = ~�n
2(f ) (p(f )�(f )+ 1) (1)

The correlation matrix of w(m) can be written as fol-
lows :

Rw(f ) = ~�2n(f )
�
�(f )SfS

H
f
+ IL

�
Now the use of the equality between the determinants
of Ry and Rw yields :

jRyj = jRwj = ~�2
L

n (f )
���(f )SfSHf + IL

��
= ~�2

L

n (f )
���(f )SH(f )S(f )+ Ip(f )

��
Let 
1(f ); � � � ; 
p(f )(f ) be the eigenvalues of the matrix
SH(f )S(f ). One �nd :

jRyj = ~�2
L

n (f )
p(f )Q
i=1

(1 + 
i(f )�(f ))

By substituting ~�2n(f ) by its value deduced from Eq (1),
it is straightforward to demonstrate that �(f ) is a root
of :

P (�) =
p(f )Q
i=1

(1 + 
i(f )�)P
L
y � jRyj (p(f )�(f )+ 1)

L

Lemma : The polynomial P has one and only

one real positive root.

If we de�ne �r(f ) as the unique real positive root of
P , and use Eq (2), we obtain the estimates of �2(f )
and ~�2n(f ) :

~�2n(f ) =
Py

p(f )�r(f )+1
and �2(f ) =

Py�r(f )

p(f )�r(f )+1

5. FREQUENCY ESTIMATION

5.1. Reduction of the sphere of investigation

It is impossible to exactly maximize the C function and
then �nd the appropriate f . So we propose to track the
solution by estimating a set of K frequencies which
contains the true frequencies ffei g1�i�p. This natu-
rally implies that K � p. We will note F = ffig1�i�K
this set of K frequencies and will call it the set of the
possible frequencies. F can be obtained by applying
an algorithm like MUSIC or ESPRIT with the order
K. Indeed it can be shown, in the asymptotical case,
that the set F obtained by one of these two algorithms
contains the true frequencies of the signal y(m).

5.2. An iterative scheme

The maximization of the C criterion on the 2K permu-
tations on the set F can be burdensome. In this para-



graph, we thus propose the following iterative scheme :

initialization

p = 0
Cmax = �1
fd0 = fg
iterations

for i = 1 to K

fdi = arg max
fj2Fnffd1 ;��� ;fdi�1g

C([fd1 ; � � � ; fdi�1 ; fj]T )

if C([fd1 ; � � � ; fdi ]T ) > Cmax
Cmax  C([fd1 ; � � � ; fdi ]T )
p p+ 1

end

end

f̂ = ([fd1 ; � � � ; fdp ]T ))

6. OPTIMIZATION

The variances on the estimates of ffei g1�i�p contained
in the set F is greater than the ones obtained by using
MUSIC or ESPRIT with the exact order. So, we pro-
pose a �nal stage in deriving to this method which is a
gradient based optimization :

fn+1 = fn � �n
�
@C
@f

�
f=fn

where �n is a small real positive constant and f0 is the
frequency vector bf estimated by the method introduced
in section 5.

7. SIMULATIONS

In this section, we present simulation results to demon-
strate the e�ciency of the proposed method. The data
model was generated from :

y(m) =
p
10 exp(j2�f1m) + exp(j2�f2m+ �) + n(m)

choosing the normalized frequencies f1 and f2 as 0:28
and 0:28+ � with � = 1=N . The number of samples N
was chosen as 25, the correlation matrix size L as 12
and the overestimation order K as L�1. The variance
of the noise �2n is set so as to give the desired SNR

de�ned as SNR = 10 log(
pP
i=1

jaij2)=(�2n). The simula-

tion results were obtained from 100 Monte Carlo tri-
als. In each trial, the noise realization and the initial
phase � are chosen randomly. Figure 1 shows the mean
square error (MSE) of f1 and f2 estimated respectively
with the proposed and with MUSIC methods. Figure 2
shows the probability of error respectively for the pro-
posed and for MDL methods.
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Figure 1: MSE's of the estimates of f1 and f2 ver-
sus SNR with MUSIC and with the proposed method,
N=25, L=12
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Figure 2: Probability of detection errors versus SNR
for MDL and the proposed method, N=25, L=12

8. APPLICATION TO REAL DATA

We now illustrate the e�ciency of the algorithm we
have introduced with real data. This illustration deals
with the problem of localization of the scattering cen-
ters of a target. When illuminated by an incident plane
wave at frequency f , we can model the amplitude of a
radar target echo as follows [4] :

C(f) =
pP
i=1

aie
�j2� 2f

c
xi

where p is the number of scatterers of the target, ai
the amplitude of the ith scatterer and xi the projected
distance of this scatterer on the radar line of sight.

By measuring the amplitude of the radar target echo
for a set of frequencies ffig1�i�N (not to confuse with



the frequencies of the model introduced in section 2),
we obtain some estimates of the projected distances of
the scatterers on the radar line of sight by using the
FFT or high resolution spectral analysis algorithms.
The following example shows the results given by the
FFT, MUSIC and the algorithmwe have introduced on
real measurements. The frequency step is 0:0384 GHz.
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Figure 3: Simpli�ed target : frequency band 8.2-10
GHz
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Figure 4: Simpli�ed target : frequency band 16.2-18
GHz

9. CONCLUSION

A new spectral analysis method based on subspace de-
composition has been proposed. This method is based
on a joint "detection-estimation" scheme. This method
is carried out in three steps. First, we obtain a set of
possible frequencies which contains some estimates of

the true signal frequencies. The true estimates are then
detected with a ML based method. Finally, a gradient-
like optimization provides more accurate estimates of
the signal frequencies. We have shown through simu-
lations that the proposed method gives better results
than the ones based on the classical "detection then
estimation" scheme. We have illustrated the e�ciency
of this method on real radar measurements.
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