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1. ABSTRACT

A new recursive eigendecomposition algorithm of Complex
Hermitian Toglitz matrices is studied. Based on Trench's
inversion of Toglitz matrices from their autoregressive
analysis, we have developed a fast recursive iterative
algorithm that takes into account the rank-one modification
of successive order Toeplitz matrices. To speed up the
computational time and to increase numerical stability of ill-
conditioned eigendecomposition in case of very short data
records analysis, we have extended this method by
introducing an ago-antagonistic regularized reflection
coefficient via Levinson equation. We provide a geometrical
interpretation of this new recursive eigendecomposition.

2. PREAMBLE

Let us remind you that Levinson algorithm provides
Cholesky factorization of the inverse Toglitz matrix. Rank-
one modification approach leads to the Gohberg-Semencul
formula which is an integrated version of Trench algorithm
[5]. Trench algorithm induces an order recursive structure of
the inverse Tomlitz matrix. We propose to exploit this
existing structure to achieve a fast and robust
eigendecomposition. First, we obtain eigenvalues by finding
the roots of an autoregressive parameters-based function [2].
At each order, a number of independent structurally identical
nonlinear problems is solved in parallel. Derivative of this
intermediate function is geometrically interpreted. In a
second step, via Levinson equation, reflection coefficient is
used to decrease computational complexity and increase
stability by an ago-antagonistic regularization [1][2]. Ago-
antagonism [6], conceived as Minimum Free Enthalpy
concept in a thermodynamic analogy approach, extends
regularization method and avoids over-regularization
problems. Among research in the area of recursive eigenspace
decomposition, other algorithms have been proposed taking
advantage of direct Toglitz matrix structure, like RISE [3][4],
but they are not very well adapted to very short data records
analysis.

3. RECURSIVE EIGENDECOMPOSITION VIA
AUTOREGRESSIVE ANALYSIS

3.1 Yule-Walker and Levinson Equation
Autoregressive analysis problem is solved by Yule-Walker
equation. Order recursive structure of Toglitz correlation
matrix provides the recursive Levinson equation :
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with the following notation : v =3V~
where Jis an anti-diagonal matrix. Then, Levinson
Equation is given by :
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3.2 Cholesky, Trench and Gohberg-Semencul
Equation

Trench has found order recursive structure of the inverse
correlation Togplitz matrix via autoregressive parameters :
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It prooves that Levinson algorithm correponds to the

Cholesky factorization of @ =R:*:
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Adding a rank-one modification to an Hermitian matrix has
the same effect as appending a column to the triangular matrix
of its Cholesky factorization. In the same way, Trench has
identified an other equivalent matrix structure of the inverse
Togplitz correlation matrix :
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If we consider rank-one modification from one order to the
next, we find the Gohberg-Semencul formula :
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It leads to the following equation, that is an integrated Trench
Algorithm version, known as Gohberg-Semencul formula.
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3.3 Recursive Eigendecomposition

Our algorithm uses rank-one modification structure of the

successive inverse Toglitz matrix to provide a recursive
eigendecomposition :

Elﬂ) :R_lzg an_l Gn1A+1 B
E " " BogAng @, H0 A, —1A+—1Q
xXMo
Eqnn.x(k”):n(“)x(”’ with X =g 0
kO
o™ ST X =0 X(n) 4

A l[an 2T X(n)] ( LN 1)-&@ =0
If we assume that eagenvectors and eigenvalues at previous
order are known :
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Then, eigenvalues are recursively provided by roots of
function F” , and eigenvectors can be computed by (6) :
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If we apply corollaire of Courant-Fisher theorem, it proves
the interlacing of eigenvalues at successive orders, because
inverse correlation matrix @, is included in .. We also
know that the inverse eigenvalues are all positive and inferior
to the inverse prediction error power a,, :
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The interlacing structure of the inverse eigenvalues simplifies
research of F™ roots because derivative of this function is
strictly greater than unity :
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Recursive structure of the inverse Tomlitz matrix alows to
obtain a new equation about derivative of F” :
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In the same way, expression (3) provides :
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4 12
Ay X (11)

(n) () _ )

(n ) Nk’ = Opog T 0y rlk "21 r]En_l) _n&n)) -

with 9G°(n{) _ a,, 1)
on

4. GEOMETRICAL INTERPRETATION

4.1 Projection |Interpretation

By identification of these two following expressions of the

inverse correlation Toglitz matrix @, we have :
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From equation (8), we deduce a geometrical relation :
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In the Hilbert Space, the inverse derivative of F”(n,™)
appears as the projection of vector [1 A ,]" ( AR prediction
vector) on eigenvector X,”, normalized by its first
component X n):
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In the same way, we have :
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4.2 Additional results
By using (13) and (6), we proove a new geometrical result :
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In the same way, by using (13) and (10), we have also :
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4.3 New expression of reflection coefficient
By identification of ¢ with two different approaches :
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we can express reflection coefficients in an other way :
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5. RECURSIVE EIGENDECOMPOSITION VIA
REFLECTION COEFFICIENT
5.1 Notations
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5.2 Eigenvalues and eigenvectors

By using previous notations, we have developed the
following equations. Eigenvalues are roots of :
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and eigenvectors are provided by :
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5.3 Levinson Equation Utilization

Levinson equation alows to decrease computational
complexity by introducing a reflection coefficient and to
increase robustness by regularization. If we consider the
following equation deduced from (1) :
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and equation (4), it provides a recursive equation about the
following vectors product :
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In the same way, if we use equation (9) and Levinson equation,
we obtain this associated equation :
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Levinson equation (1) also provides :
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5.4 New Recursive Eigendecomposition
We have developed a new recursive eigendecompostion
algorithm via reflection coefficient :
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This coefficient will be computed by an AR analysis.
6. AGO-ANTAGONISTIC REGULARIZATION

We have developed different approaches [1,2] to compute
6.1 Maximum Entropy Approach Classical Burg
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6.3 Minimum Free Enthalpy Approach
Ago-antagonistic Burg
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0 is optimal when the straight line of the rightterm is
tangential to 3rd order polynomial of the left term :
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Final result is computed by a substitution method [2].
7. RESULTS

7.1 Recursive Eigendecomposition

Fig.l : F“(n) for 8 complex samples

7.2 Classical and Regularized Burg Spectrum
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Fig. 2.1 ME Spectrum and poles with 2
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Fig. 2.2 Regularized Spectrum and poles

7.3 Ago-antagonistic Burg Spectrum
Time-doppler spectrum analysis of 8 complex radar samples
from an helicopter data records :

Fig.3.1 Classical time-doppler Burg Spectrum

Fig.3.2 Regularized time-doppler Spectrum

Fig.3.3 Ago-antagonistic time-doppler Spectrum
Ago-antagonism avoids smoothing effects of over-
regularization methods and allows to restore some fine details
by increasing spectrum resolution.

8. CONCLUSION
We have developed a new algorithm that finds the complete
eigenspace decomposition of successively larger Hermitian
Tomlitz matrix. Computation and robustness performances
are provided by the ago-antagonistic reflection coefficient.
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