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ABSTRACT

This communication tackles the problem of a Gaussian
band-limited continuous signal with unknown charac-
teristics sampled with jitter. Under this weak assump-
tion, we demonstrate a relation linking the power spec-
tral density of the continuous signal to the second and
fourth order statistics of the measured samples. A fun-
damental point is that this relation does not require
the knowledge of the jitter characteristics. This result
can be exploited for the derivation of spectral estima-
tion algorithms when the jitter is unknown or jitter
detection tests when the sampled signal is unknown. A
simulation of spectral estimation confirms the validity
of the result.

1. INTRODUCTION

Sampling jitter arises in many applications. They in-
clude spectral estimation, [7] or source localization, [8].
The study of sampling error has recently received a
growing interest. In [1, 3, 10], the authors address the
estimation of the jitter variance for a signal with known
or specific spectral properties.

This communication, tackles the problem of a Gaus-
sian signal with unknown characteristics sampled with
Jitter. Under this weak assumption, we show that the
power spectral density (PSD) of the continuous signal
can be recovered from a combined use of the sampled
signal second and fourth order statistics. This result is
validated by a computer experiment where the PSD of
a signal sampled with jitter is recovered.

2. PROBLEM FORMULATION AND
NOTATIONS

A real stationary Gaussian signal z(t) having PSD S(w)
and autocorrelation ¢(7) is considered. () is assumed
to be a low-pass signal with S(w) = 0 for |w| > =/h.
z(t) is sampled according to Shannon theorem by a

sampler that exhibits jitter. The sampling instants are
t, = nh+7, where v, is a zero-mean iid sequence with
characteristic function ®(w) = E[exp(jwyy,)]. The pa-
rameter A is fixed to 1 without loss of generality and
the samples at the output of the sampler are denoted
zn = x(ty). The functions S(w) and ®(w) are un-
known. The paper addresses the problem of estimating
the PSD S(w) using the observations .

3. THE SECOND AND FOURTH ORDER
STATISTICS OF Xy

3.1. Power Spectral Density of z,

Using the second order stationarity property of ()
and conditional expectations leads to:

cn(n) = E[zn2min] = Elc(tmin — tn)].

Replacing in this expression ¢(r) by the inverse Fourier
transform of S(w) yields:

iy

Ym # 0, cp(m) = /_ | (u)|S (u)e? "™ du

cn(0) = S(u)du = ¢(0).

-7
¢n(0) can be expressed as :

) = [ 100PSda+ [ S = [l

iy -7

The PSD of z, is then given by:

1 ,
Sh(u):% Z cp(n)e™7un

1 ™

= |Pu)PS(w) + o~ [ S(w)(1~ |@(u)|*)du.
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The modulus of ®(u) being upper bounded by 1, the
second integral is positive. Consequently, the effect of



the jitter can be interpreted at the second order as a
filtering process followed by an additive noise. Unfor-
tunately, this expression does not allow to achieve our
initial goal. For this sake, a new process z, with auto-
correlation:

Ym, ép(m) = /_7T |®(u)|*S (u)e? "™ du,

iy

will be considered. The PSD of Z,, satisfies:
Sh(w) = |®(u)]*S(u). (1)

The fact that gh(u) is positive confirms that é,(n) is
a valid autocorrelation sequence. Moreover, this ex-
pression shows the equivalence between the problem of
estimation of |®(u)| and S(u) on [—m, x]. For this rea-
son, we will focus on the sequel on the PSD estimation.
Once this last is obtained, (1) can be used to estimate
parameters of the jitter. For example, if the jitter vari-
ance 0']2» is required, substituting in (1) |®(u)|?* by its
second order expansion, 1 — uzo"?z», for uzo"?z» < 1, gives:

uzo"?z» ~ log(S(u)/Sh(u)).

The first step to obtain an estimate of gh(u) is the
estimation of ¢j(n) for n # 0 directly from the z,.
The following step is the estimation of ¢,(0). A solu-
tion to obtain this quantity is to use two samplers with
independent jitters v, et 4/, [9, 2]. If ¢/, denotes the
instants of sampling of the second sampler:

+ oo

Ele(tn)2(t])] = / o(r)p(r)dr,

where p(r) is the PDF of 5, — v/, and consequently
E[z(tn)x(t))] = ¢n(0). Note that, instead of using a
DFT of the é,(m), an autoregressive model can be fit-
ted to the autocorrelations of %, to obtain the esti-
mated spectrum.

3.2. Trispectrum of z,

Denote as cp(k, [, m) the fourth order cumulants of z,,.
The derivation of ¢, (0,1, 1) obtained in [1] can be eas-
ily generalized to every cumulant. This leads to the
following result:

Theorem 1 The only non-zero fourth order cumulants
of &n, are cp (I —p, ;1) with p # 0. Their expression is:
o forp# 0,14 p:

enll — _2//45&5

E(, f) = ®(a + )27 () 27() —

)S(3)e? +0P) dovd g,

()2 ()]

o forl #0:

n(0,1,0) _2// (a, B)S(a)S(B)e? T dovdp,
T(a, ) = |®(a+ p)]* — |®(a)®(3)]*.

Proof: cum(x(tn), #(tntr), (tnti), (tntm)) is first re-
placed by its definition using the fourth and second
order moments of z(t,). In this expression, each ex-
pectation 1s substituted by a conditionnal expectation.
The fourth order moment of the Gaussian signal ()
1s then replaced by its expression as a function of its
second order moments. This gives:

cn(k,l,m) =E[c(tnsr — tn)c(tnsm — tati)]
+ Ele(tntt —ta)e(tntm — tntn)]
Ele(tntm — tn)c(tnst — tntr)]
ntk = tn)[E[c(tnsm — tnti)]
ntt = o) JE[e(tntm — tnik)]
ntm = tn)|E[c(tntr — thyr)].

[e(t
— Efe(t
— Efe(t
— Efe(t

The analyze of this expression, using the independence
of the jitter, shows that the only non zero terms occur
for l = m and k # [. In this case, the cumulant reduces
to:

Cp (k’, l, l) = QE[C(tn_H — tn)c(tn+l — tn+k)]
— 2E[e(tngr — tn)JElc(tnsr — tugs)].

Replacing in this expression ¢(r) by the inverse Fourier
transform of S(w) and using again the independence of
the jitter terminates the proof. a

The trispectrum of x,, Th(u1, u2, ug), defined on
the usual domain |uy|, |usl, |us| < m, |ug + us +ug| < m
equals:

T (ur, us, uz)

3 Z en(l—p,1,10)

L,p;p#0
eI ((wituztus)l—uip)

If u = —uy and v = uy+us+us, a new function 'y, (u, v)
can be defined for |u|, |v| < =

Ty (u,v) = 7Ty (u1, uz, us)

1 .
=57 Z en(l — p,l,l)e_](vl'l'“p).
T pipsto (2)

The next step is the substitution of the cumulants
by their expression given by theorem 1. This suggests
a decomposition of T'p, (u, v) in two terms:

Tp(u,v) = T1(u,v) + Ta(u, v),



where in T'y(u,v) the sum ranges over [ # p and in
I'y(u,v) the sum ranges over [ = p. The evaluation of
these terms using the Poisson sum formula gives:

Ty(u,v) = Zfi(u,v), To(u,v) = Zfé(u,v),

where:

T (u,v) = Z(u, v)S(u)S(v)

I (u,v) = ;—ﬂl_ ’ Elo,u+v—a)S(a)S(u+v— o)da
1) = oz [ S msta)s@dads
=5 [ =0,9)8ws@ds

T3 (u,v) = % ’ T(o,u+v—a)S(a)S(u+v—a)da

F%(u v) =T a(u, v+ 2m)
F‘;’( v) =Tsa(u,v—2m)

a1

4. EXPRESSION OF 5(w)

[ (u,v) =

0)S(8)dads.

The problem is to obtain from T'p(u, v) and gh(u) an
expression of S(w) that does no depend on ®(.). A so-
lution of this problem is given by the following theorem
that is the major contribution of this communication.

Theorem 2 For a symmetric zero mean jitter, we have:

S(w)Sh (@) = S (w +2/ aloo)

du.
= (3)

Proof: Each I'{(u,v) is first differentiate with respect
to u and v replaced by —u. The following properties
verified in part by the characteristic function of a sym-
metric and zero mean random variable:

®(u)™, @'(0) =0,
—<I>()<I>(0) 1, 5(=u) = S(u).

are then used to simplify the expressions. After some

calculation we obtain:

1. or3(u, v)/3u|vz_u and O3 (u, v)/3u|vz_

the integrals of odd functions on [—#, 7] and con-

mvolve
U

sequently equal zero.

2. OT3(u, v)/3u|vz_u and 93 (u, v)/3u|vz_
the integral S(a+27) that equals zero for |a| < 7.

" mvolves

3. The differentiation of I'¥(u,v), I'}(u,v), T'3(u,v)
with respect to u is obviously zero.

Consequently, the only non zero term corresponds
to OI'1 1(u,v)/0ul,__, and equals:
T2 = (@) — 20020 () () S (0
e (). (1)
The differentiation of (1) with respect to u gives:
Sh(u) = () (29" (w)S(u) + @(u)S" (w).  (5)
The substitution of (1) and (5) in (4) leads to:

22D ()3 () — (S

v=—u

This equation can now be integrated on [0,w]. Equa-
tion (1) implying S5 (0) = S(0), we finally obtain (3).
(I

5. ESTIMATION OF THE CORRECTIVE
TERM

The last step is to derive an expression of the integral
that appears in (3) as a function of the fourth order
cumulants of z,. Differentiation of (2) gives:

Ol (u,v)  —j

3 =52 Z pen(l — p, 1, e~ iHup),
u T

L,p;p#0

The integration of this equality where v has been sub-
stituted with —u is:
I
du=<5 2.

/w 9T (u, v)
0 du v=Tu Lp;p#0

pen(l— p, 1, 1) sing((p — Dw/2)e~ 1 (P=0w/2,

Finaly, the two PSD in (3) being real valued, the pre-
vious expression can be simplified to:

“ Ol (u,v) _ W

0 Ju vy 72

> " sing(kw/2) sin(kw/2) Y (1= k)en(k,1,1). (6)
k l

A question that arises immediately is the conver-
gence of the previous summations. It can be easily
verified that if z, is fourth order mixing in the sense
defined in [5, p. 26], the summation over [ converges.
We will assume that the convergence of the summation
over k is allowed by the decaying of the sin.(-).
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Figure 1: Estimation of S(w).

6. SIMULATIONS AND CONCLUSIONS

To validate the previous results, (3) has been applied
to PSD estimation. Neverthless, the expression of S(w)
involving a division by S (w), (3), cannot be directly
usable.

For this reason, we derive a slightly different esti-
mation scheme. If we assume that S(w) and Sh (w) are
of the same order of magnitude, which is verified for w
near 0, see (1), Sh (w) can be substituted by S(w) in
the left side of (3). This leads to the following approx-
imation of S(w) :

du.

v=—u

Sw)? & Sh(w)? + 2/ W
0

For the following experiment, the signal x(t) is the
Gaussian stationary process, [6]:

dr = —axdt + dv,

where: a > 0, v(t) is a Wiener process with variance
parameter 27 and #(0) a zero mean Gaussian variable
with variance m/«. The PSD of this process is S(w) =

1/(a? + w?). The discretisation of x(t) at the instants
t, is, [4] :

Tpy1 = 6_a(t"+1_t")l‘n + (1 _ 6_2a(t"+1_t"))1/26n+1,
where e, is iid Gaussian with variance 7/a. As in
[1], the jitter is a binary process taking the values
{—0.4,0.4} and a = 2. A realization of N = 10°
samples have been drawn. From this process é,(m),
m=0...15and ¢y (k,{,1), |k, |l] < 6, k # 1, have been
estimated. The cumulants have been computed by av-
eraging the estimates obtained on segments of N/30

samples with 10% of overlap. Figure 1 shows the theo-
retical PSD S(w), Sh (w) and their estimated versions.
These results clearly prove the validity of the math-
ematical derivations. The oscillation in the estimated
PSD can be interpretated by both the truncation in the
sumation of (6) and the fact that the process z(¢) for
the simulation is not really low-pass and some alias-
ing is present. The use of (3) for jitter detection is
currently under investigation.
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