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ABSTRACT

This communication tackles the problem of a Gaussian
band-limited continuous signal with unknown charac-
teristics sampled with jitter. Under this weak assump-
tion, we demonstrate a relation linking the power spec-
tral density of the continuous signal to the second and
fourth order statistics of the measured samples. A fun-
damental point is that this relation does not require
the knowledge of the jitter characteristics. This result
can be exploited for the derivation of spectral estima-
tion algorithms when the jitter is unknown or jitter
detection tests when the sampled signal is unknown. A
simulation of spectral estimation con�rms the validity
of the result.

1. INTRODUCTION

Sampling jitter arises in many applications. They in-
clude spectral estimation, [7] or source localization, [8].
The study of sampling error has recently received a
growing interest. In [1, 3, 10], the authors address the
estimation of the jitter variance for a signal with known
or speci�c spectral properties.

This communication, tackles the problem of a Gaus-
sian signal with unknown characteristics sampled with
jitter. Under this weak assumption, we show that the
power spectral density (PSD) of the continuous signal
can be recovered from a combined use of the sampled
signal second and fourth order statistics. This result is
validated by a computer experiment where the PSD of
a signal sampled with jitter is recovered.

2. PROBLEM FORMULATION AND

NOTATIONS

A real stationary Gaussian signal x(t) having PSD S(!)
and autocorrelation c(� ) is considered. x(t) is assumed
to be a low-pass signal with S(!) = 0 for j!j > �=h.
x(t) is sampled according to Shannon theorem by a

sampler that exhibits jitter. The sampling instants are
tn = nh+
n where 
n is a zero-mean iid sequence with
characteristic function �(!) = E[exp(j!
n)]. The pa-
rameter h is �xed to 1 without loss of generality and
the samples at the output of the sampler are denoted
xn = x(tn). The functions S(!) and �(!) are un-
known. The paper addresses the problem of estimating
the PSD S(!) using the observations xn.

3. THE SECOND AND FOURTH ORDER

STATISTICS OF XN

3.1. Power Spectral Density of xn

Using the second order stationarity property of x(t)
and conditional expectations leads to:

ch(n) = E[xnxm+n] = E[c(tm+n � tn)]:

Replacing in this expression c(� ) by the inverse Fourier
transform of S(!) yields:

8m 6= 0; ch(m) =

Z �

��

j�(u)j2S(u)ejumdu

ch(0) =

Z �

��

S(u)du = c(0):

ch(0) can be expressed as :

ch(0) =

Z �

��

j�(u)j2S(u)du +

Z �

��

S(u)(1 � j�(u)j2)du:

The PSD of xn is then given by:

Sh(u) =
1

2�

+1X
n=�1

ch(n)e
�jun

= j�u)j2S(u) +
1

2�

Z �

��

S(u)(1 � j�(u)j2)du:

The modulus of �(u) being upper bounded by 1, the
second integral is positive. Consequently, the e�ect of



the jitter can be interpreted at the second order as a
�ltering process followed by an additive noise. Unfor-
tunately, this expression does not allow to achieve our
initial goal. For this sake, a new process ~xn with auto-
correlation:

8m; ~ch(m) =

Z �

��

j�(u)j2S(u)ejumdu;

will be considered. The PSD of ~xn satis�es:

~Sh(u) = j�(u)j2S(u): (1)

The fact that ~Sh(u) is positive con�rms that ~ch(n) is
a valid autocorrelation sequence. Moreover, this ex-
pression shows the equivalence between the problem of
estimation of j�(u)j and S(u) on [��; �]. For this rea-
son, we will focus on the sequel on the PSD estimation.
Once this last is obtained, (1) can be used to estimate
parameters of the jitter. For example, if the jitter vari-
ance �2j is required, substituting in (1) j�(u)j2 by its

second order expansion, 1� u2�2j , for u
2�2j � 1, gives:

u2�2j � log(S(u)= ~Sh(u)):

The �rst step to obtain an estimate of ~Sh(u) is the
estimation of ch(n) for n 6= 0 directly from the xn.
The following step is the estimation of ~ch(0). A solu-
tion to obtain this quantity is to use two samplers with
independent jitters 
n et 
0n, [9, 2]. If t0n denotes the
instants of sampling of the second sampler:

E[x(tn)x(t
0
n)] =

Z +1

�1

c(� )p(� )d�;

where p(� ) is the PDF of 
n � 
0n and consequently
E[x(tn)x(t0n)] = ~ch(0). Note that, instead of using a
DFT of the ~ch(m), an autoregressive model can be �t-
ted to the autocorrelations of ~xn to obtain the esti-
mated spectrum.

3.2. Trispectrum of xn

Denote as ch(k; l;m) the fourth order cumulants of xn.
The derivation of ch(0; 1; 1) obtained in [1] can be eas-
ily generalized to every cumulant. This leads to the
following result:

Theorem 1 The only non-zero fourth order cumulants

of xn are ch(l� p; l; l) with p 6= 0. Their expression is:

� for p 6= 0, l 6= p:

ch(l � p; l; l) = 2

ZZ �

��

�(�; �)S(�)S(�)ej(�l+�p)d�d�;

�(�; �) = �(�+ �)��(�)��(�) � j�(�)�(�)j2:

� for l 6= 0:

ch(0; l; l) = 2

ZZ �

��

�(�; �)S(�)S(�)ej(�+�)ld�d�;

�(�; �) = j�(�+ �)j2 � j�(�)�(�)j2:

Proof: cum(x(tn); x(tn+k); x(tn+l); x(tn+m)) is �rst re-
placed by its de�nition using the fourth and second
order moments of x(tn). In this expression, each ex-
pectation is substituted by a conditionnal expectation.
The fourth order moment of the Gaussian signal x(t)
is then replaced by its expression as a function of its
second order moments. This gives:

ch(k; l;m) =E[c(tn+k � tn)c(tn+m � tn+l)]

+ E[c(tn+l � tn)c(tn+m � tn+k)]

+ E[c(tn+m � tn)c(tn+l � tn+k)]

� E[c(tn+k � tn)]E[c(tn+m � tn+l)]

� E[c(tn+l � tn)]E[c(tn+m � tn+k)]

� E[c(tn+m � tn)]E[c(tn+l � tn+k)]:

The analyze of this expression, using the independence
of the jitter, shows that the only non zero terms occur
for l = m and k 6= l. In this case, the cumulant reduces
to:

ch(k; l; l) = 2E[c(tn+l � tn)c(tn+l � tn+k)]

� 2E[c(tn+l � tn)]E[c(tn+l � tn+k)]:

Replacing in this expression c(� ) by the inverse Fourier
transform of S(!) and using again the independence of
the jitter terminates the proof. �

The trispectrum of xn, Th(u1; u2; u3), de�ned on
the usual domain ju1j; ju2j; ju3j < �, ju1+ u2+ u3j < �

equals:

Th(u1; u2; u3) =
1

(2�)3

X
l;p;p6=0

ch(l � p; l; l)

e�j((u1+u2+u3)l�u1p):

If u = �u1 and v = u1+u2+u3, a new function �h(u; v)
can be de�ned for juj; jvj< �:

�h(u; v) = �Th(u1; u2; u3)

=
1

8�2

X
l;p;p6=0

ch(l � p; l; l)e�j(vl+up):
(2)

The next step is the substitution of the cumulants
by their expression given by theorem 1. This suggests
a decomposition of �h(u; v) in two terms:

�h(u; v) = �1(u; v) + �2(u; v);



where in �1(u; v) the sum ranges over l 6= p and in
�2(u; v) the sum ranges over l = p. The evaluation of
these terms using the Poisson sum formula gives:

�1(u; v) =
4X

i=1

�i1(u; v); �2(u; v) =
4X

i=1

�i2(u; v);

where:

�11(u; v) = �(u; v)S(u)S(v)

�21(u; v) =
�1

2�

Z �

��

�(�; u+ v � �)S(�)S(u + v � �)d�

�31(u; v) =
1

(2�)2

ZZ �

��

�(�; �)S(�)S(�)d�d�

�41(u; v) =
�1

2�

Z �

��

�(v; �)S(v)S(�)d�

�12(u; v) =
1

2�

Z �

��

�(�; u+ v � �)S(�)S(u + v � �)d�

�22(u; v) = �2;2(u; v + 2�)

�32(u; v) = �2;2(u; v � 2�)

�42(u; v) =
1

(2�)2

ZZ �

��

�(�; �)S(�)S(�)d�d�:

4. EXPRESSION OF S(!)

The problem is to obtain from �h(u; v) and ~Sh(u) an
expression of S(!) that does no depend on �(:). A so-
lution of this problem is given by the following theorem
that is the major contribution of this communication.

Theorem 2 For a symmetric zero mean jitter, we have:

S(!) ~Sh (!) = ~Sh(!)
2 + 2

Z !

0

@�h(u; v)

@u

����
v=�u

du:

(3)

Proof: Each �qp(u; v) is �rst di�erentiate with respect
to u and v replaced by �u. The following properties
veri�ed in part by the characteristic function of a sym-
metric and zero mean random variable:

�(u) = �(�u) = �(u)�;�0(0) = 0;

�0(�u) = ��0(u);�(0) = 1; S(�u) = S(u):

are then used to simplify the expressions. After some
calculation we obtain:

1. @�21(u; v)=@u
��
v=�u

and @�12(u; v)=@u
��
v=�u

involve

the integrals of odd functions on [��; �] and con-
sequently equal zero.

2. @�22(u; v)=@u
��
v=�u

and @�32(u; v)=@u
��
v=�u

involves

the integral S(��2�) that equals zero for j�j � �.

3. The di�erentiation of �31(u; v), �
4
1(u; v), �

3
2(u; v)

with respect to u is obviously zero.

Consequently, the only non zero term corresponds
to @�1;1(u; v)=@ujv=�u and equals:

@�h(u; v)

@u

����
v=�u

= (�0(u) � 2�(u)2�0(u))�(u)S(u)2

+ (1� �(u)2)�(u)2S0(u)S(u): (4)

The di�erentiation of (1) with respect to u gives:

~S0h(u) = �(u)(2�0(u)S(u) + �(u)S0(u)): (5)

The substitution of (1) and (5) in (4) leads to:

2
@�h(u; v)

@u

����
v=�u

= (S(u) ~Sh(u))
0 � ( ~Sh(u)

2)0:

This equation can now be integrated on [0; !]. Equa-
tion (1) implying ~Sh(0) = S(0), we �nally obtain (3).

�

5. ESTIMATION OF THE CORRECTIVE

TERM

The last step is to derive an expression of the integral
that appears in (3) as a function of the fourth order
cumulants of xn. Di�erentiation of (2) gives:

@�h(u; v)

@u
=

�j

8�2

X
l;p;p6=0

pch(l � p; l; l)e�j(vl+up):

The integration of this equality where v has been sub-
stituted with �u is:

Z !

0

@�h(u; v)

@u

����
v=�u

du =
�j!

8�2

X
l;p;p6=0

pch(l � p; l; l) sinc((p� l)!=2)e�j(p�l)!=2:

Finaly, the two PSD in (3) being real valued, the pre-
vious expression can be simpli�ed to:

Z !

0

@�h(u; v)

@u

����
v=�u

du =
!

8�2X
k

sinc(k!=2) sin(k!=2)
X
l

(l � k)ch(k; l; l): (6)

A question that arises immediately is the conver-
gence of the previous summations. It can be easily
veri�ed that if xn is fourth order mixing in the sense
de�ned in [5, p. 26], the summation over l converges.
We will assume that the convergence of the summation
over k is allowed by the decaying of the sinc(�).
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Figure 1: Estimation of S(!).

6. SIMULATIONS AND CONCLUSIONS

To validate the previous results, (3) has been applied
to PSD estimation. Neverthless, the expression of S(!)
involving a division by ~Sh(!), (3), cannot be directly
usable.

For this reason, we derive a slightly di�erent esti-
mation scheme. If we assume that S(!) and ~Sh(!) are
of the same order of magnitude, which is veri�ed for !
near 0, see (1), ~Sh(!) can be substituted by S(!) in
the left side of (3). This leads to the following approx-
imation of S(!) :

S(!)2 � ~Sh(!)
2 + 2

Z !

0

@�h(u; v)

@u

����
v=�u

du:

For the following experiment, the signal x(t) is the
Gaussian stationary process, [6]:

dx = ��xdt+ dv;

where: � > 0, v(t) is a Wiener process with variance
parameter 2� and x(0) a zero mean Gaussian variable
with variance �=�. The PSD of this process is S(!) =
1=(�2 + !2). The discretisation of x(t) at the instants
tn is, [4] :

xn+1 = e��(tn+1�tn)xn + (1 � e�2�(tn+1�tn))1=2en+1;

where en is iid Gaussian with variance �=�. As in
[1], the jitter is a binary process taking the values
f�0:4; 0:4g and � = 2. A realization of N = 105

samples have been drawn. From this process ~ch(m),
m = 0 : : :15 and ch(k; l; l), jkj; jlj � 6, k 6= l, have been
estimated. The cumulants have been computed by av-
eraging the estimates obtained on segments of N=30

samples with 10% of overlap. Figure 1 shows the theo-
retical PSD S(!), ~Sh(!) and their estimated versions.
These results clearly prove the validity of the math-
ematical derivations. The oscillation in the estimated
PSD can be interpretated by both the truncation in the
sumation of (6) and the fact that the process x(t) for
the simulation is not really low-pass and some alias-
ing is present. The use of (3) for jitter detection is
currently under investigation.
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