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Figure 2. Root-mean-squared errors of angle estimates
as a function of SNR when the direct and reected signals
arrive from (45�; 85�) and (45�; 95�), respectively. The cor-
relation coe�cient between the direct and reected signals
is 0:99. Further, M = 10, M = 16, and N = 500. (a) The
estimates of the azimuth angle �. (b) The estimates of the
elevation angle �.

rithms are obtained from 50 independent Monte-Carlo trials
and are compared with the results of the 2D-MODE algo-
rithm and with the corresponding theoretical asymptotic
statistical performances.

We consider the case of large N , which occurs in two-
dimensional angle estimation by means of anM�M rectan-
gular uniform linear array when the incident angles are re-
lated to each other [1]. The incident signals are assumed to
be narrowband plane waves. In this application, N denotes
the number of snapshots taken at the output of the array.
Consider the case shown in Figure 1 where a vertical 2-D
rectangular uniform linear array with M = 10 and M = 16
is used to estimate the 2-D incident angles of a signal arriv-
ing from a low angle relative to a smooth reecting surface
such as the calm sea. Assume that the original signal ar-
rives from (�1; �1), where �1 and �1 denote the azimuth and
elevation angles of the signal, as shown in Figure 1. Then
its reected signal arrives from (�2; �2) = (�1; 180

�

� �1).
The 2-D incident angles can be calculated from the f!kg

and f�
k
g in Equation (1) by:

!k =
2��1
�0

sin �k sin �k; k = 1; (40)

and

�
k
=

2��2
�0

cos �
k
; k = 1; 2; (41)

where �0 denotes the wavelength of the incident signals. In
our examples, the SNR of the reected signal is assumed
to be 3dB less than that of the direct signal. Further, the
correlation coe�cient between the direct and the reected
signals is 0:99. The spacings �1 and �2 between two adjacent
sensors in the array are assumed equal to a half wavelength.
The asymptotic variances of the estimates of � and � are
readily obtained from the asymptotic variances of the esti-
mates of !k and �

k
given in Section 4 and the Equations

(40) and (41) relating �k and �k to !k and �
k
.

Figure 2 shows the root-mean-squared errors (RMSEs) of
the angle estimates and the corresponding asymptotic (for
large N) statistical performances of the 1D-MODE and 2D-
MODE algorithms as a function of the SNR of the direct
signal when � = 45�, � = 85�, and N = 500. As expected,
as the SNR increases, the performance of 1D-MODE ap-
proaches that of the 2D-MODE, whose asymptotic statis-
tical performance is also equal to the corresponding CR-
bound. The performance of 2D-MODE is slightly better
than that of 1D-MODE only when the SNR is very small.
Yet the amount of computations needed by 1D-MODE was
only about 7% of that required by 2D-MODE in our simula-
tions. Further, as M and M increase, more computational
savings can be achieved by using 1D-MODE.
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Thus the estimates !̂ and �̂ obtained with the 1D-MODE
asymptotically (for high SNR) achieve the CR-bounds in
(25) and (26), respectively, which means that the 1D-
MODE is an asymptotically (for SNR � 1) statistically
e�cient estimator for estimating the 2-D frequencies.

4.2. The Case of Large N

Similar to the case of high SNR, the asymptotic covariance
matrices of !̂ and �̂ in the case of large N are respectively
given by

E
�
(!̂ � !)(!̂� !)T

	
=

�
2

2N

�
Re
�
H! �V

T
!

��
�1

; (29)

and

E
�
(�̂� �)(�̂� �)T

	
=

�
2

2N

�
Re
�
H� �V

T
�

��
�1

; (30)

where

V! = P!A
H
R
�1
! AP!; (31)

and

V� = P�B
H
R
�1
� BP�: (32)

It has been shown in [1] that the large-sample covari-
ance matrices of the estimates of ! and � obtained with
2D-MODE are equal to the corresponding stochastic CRBs
given by

�
(CRBs

!)
�1
�
ij
= (2N=�2)Re

�
tr
nh�

(A
0

j)
HP?

AA
0

i

�

�

BHB
��
S
�
AH 
BH

�
R�1 (A
B)S

	�
;

(33)
and

�
(CRBs

�)
�1
�
ij
= (2N=�2)Re

�
tr
���

AHA
�

�

(B
0

j)
HP?

BB
0

i

�i
S
�
AH


BH
�
R�1 (A
B)S

o�
;

(34)

respectively, where

S = lim
N!1

1

N

NX
n=1

E
�
s(tn)s

H(tn)
	
; (35)

and

R = E
�
vec

�
Y
T (tn)

�
vecH

�
Y
T (tn)

�	
: (36)

In this case, the 1D-MODE is no longer an asymptoti-
cally statistically e�cient estimator for estimating the 2-D
frequencies. According to the general theory of the CR-
bounds, we have

E
�
(!̂� !)(!̂ � !)T

	
� CRB

s
!; (37)

and

E
�
(�̂� �)(�̂� �)T

	
� CRB

s
�: (38)

The numerical examples given in the following section
show that the larger the M ( �M ) or the higher the SNR,

the smaller the di�erence between E
�
(!̂ � !)(!̂ � !)T

	
(E
�
(�̂ � �)(�̂ � �)T

	
) and CRBs

! (CRBs
�).

4.3. Further Comments

We remark that when X in (7) is a diagonal matrix,
ym;m(tn) can be modeled with the following data model
[1]:

ym;m(tn) =

�KX
�k=1

��k(tn)e
j(!�

k
m+��

k
m) + em;m(tn): (39)

For this case, the 1D-MODE approach can again be used
to estimate the 2-D frequencies. Yet it can be shown that
serious performance degradation can occur when any of the
1-D approaches (including 1D-MODE) is used with (39),
which makes our results even more unexpected. An intu-
itive explanation is that when X is a diagonal matrix, 1-D
processing does not exploit all of the information available
and hence lacks the statistical e�ciency. When X is a full
matrix, which is the case we assume, there is no structural
information that is missed by 1-D processing and hence
there is no performance degradation under mild conditions.
We also remark that the 1D-MODE approach can be ap-

plied to data with non-Gaussian noise without any mod-
i�cation. Its asymptotic covariance matrices will be the
same. The CRB matrix for the non-Gaussian case will be
di�erent from the one for the Gaussian case, but the CRB
matrix computed under the Gaussian assumption remains
the lower bound for a large class of estimators whose asymp-
totic covariance matrices do not depend on the data distri-
bution (for instance all estimators based on second-order
statistics).

5. NUMERICAL RESULTS
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Figure 1. Direction-of-arrival estimation with a 2-D array.

We present below an example showing the performance of
the 1D-MODE algorithm. The empirical results of the algo-



where Ef�g denotes the expectation and

P! = lim
N!1

1

N

NX
n=1

E
�
X(tn)B

T
B
�

X
H(tn)

	
; (10)

with (�)� denoting the complex conjugate. Note that we use
(10) to accommodate both the deterministic and stochastic
signal models. The 1D-MODE algorithm [3], or, in a related

form, WSF [6], can be applied to R̂! to obtain the estimate
of !, as shown below.
Let the columns in Ês! be the signal subspace eigenvec-

tors of R̂! that correspond to the ~K! largest eigenvalues
of R̂!, where

~K! = min[MN; rank(P!)]: (11)

We assume that ~K! is known. (If ~K! is unknown, it can
be estimated from the data as described, for example, in
[7].) Further, let �̂! be a diagonal matrix with diagonal

elements �̂1 � �̂2 � � � � � �̂ ~K!
, which are the ~K! largest

eigenvalues of R̂! , and

�̂
s
! = �̂! �M�̂

2
I; (12)

with I denoting the identity matrix and

�̂
2 = 1

(M� ~K!)M

PM

i= ~K!+1
�̂i

= 1

(M� ~K!)M

h
tr
�
R̂!

�
�
P ~K!

i=1
�̂i

i
:

(13)

It is worth noting that the involved computational burden
to evaluate Ês!, �̂!, and �̂

s
! is of the order O(M2), since

usually ~K! �M , and hence much reduced compared with
what would be required for a full eigendecomposition.
The 1D-MODE (orWSF) estimate !̂ of ! can be obtained

by minimizing the following function:

f(!) = tr
h
P
?

A(!)Ês!
�
�̂
s
!

�2
�̂
�1
!

�
Ê
s
!

�Hi
; (14)

where, for some matrix Z, the symbol P?Z stands for the

orthogonal projector onto the null space of ZH. To com-
pute the estimate of ! without searching over the parameter
space, the projector P?

A above must be reparameterized in
terms of the coe�cients of the so-called \linear predictor"
polynomial [1, 3, 5]. We remark that !̂ is a consistent esti-
mate of ! for either large N or high SNR [5, 8].
Let

R̂� =
1

N

NX
n=1

Y
T (tn)Y

�(tn) (15)

be the estimate of the following spatial covariance matrix:

R� = E
�
Y
T (tn)Y

�(tn)
	
= BP�B

H +M�
2
I; (16)

where

P� = lim
N!1

1

N

NX
n=1

E
�
X
T (tn)A

T
A
�

X
�(tn)

	
; (17)

Similarly, the 1D-MODE algorithm can be applied to R̂�
to obtain the estimate �̂ of �.
We remark that the amount of computations required by

the 2D-MODE algorithm is O(M2
M

2
N) and that required

by 1D-MODE is O(MM(M +M)N). Since the 2D-MODE
algorithm requires the computation and eigendecomposi-
tion of an MM �MM matrix R̂ [1], where

R̂ =
1

N

NX
n=1

vec
�
Y
T (tn)

�
vecH

�
Y
T (tn)

�
; (18)

with vec(�) denoting stacking all columns of a matrix into a

single column vector, while both R̂! and R̂� can be formed

from only the diagonal blocks of R̂. Thus for large M and
M , 1D-MODE requires much less computations than 2D-
MODE.

4. STATISTICAL PERFORMANCE ANALYSIS

4.1. The Case of High SNR

In the case of high SNR, i.e., � � 1 (whereas P! and
P� are O(1)), the asymptotic covariance matrices of the
estimate !̂ of ! and �̂ of � are respectively given by

E
�
(!̂ � !)(!̂ � !)T

	
=

�
2

2N

�
Re
�
H! � P̂

T
!

��
�1

; (19)

E
�
(�̂� �)(�̂� �)T

	
=

�
2

2N

�
Re
�
H� � P̂

T
�

��
�1

; (20)

where � denotes the Hadamard-Schur matrix product (i.e.,
elementwise multiplication),

P̂! =
1

N

NX
n=1

X(tn)B
T
B
�

X
H (tn); (21)

P̂� =
1

N

NX
n=1

X
T (tn)A

T
A
�

X
�(tn); (22)

H! = D
H
!P

?

AD!; (23)

with the kth column of D! being @a(!k)=@!k , and

H� = D
H
�P

?

BD�; (24)

with the kth column of D� being @b(�k)=@�k .
It has also been shown in [1] that the asymptotic (for

SNR � 1) covariance matrices of the estimate of ! and �

obtained with 2D-MODE are equal to the corresponding
deterministic Cramer-Rao bound (CRB) given by
h�
CRBd

!

�
�1
i
ij

= (2N=�2)Re
n
tr
�h�
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0

i
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Ŝ

o
) ;

(26)

where 
 denotes the Kronecker product, A
0

i = @A(!i)=@!i,

B
0

i = @B(�i)=@�i, and Ŝ = 1
N

PN

n=1
s(tn)s

H(tn) with

s(tn) = vec[XT (tn)].
From a straight forward computation of Equations (19)

and (20), we have

E
�
(!̂ � !)(!̂� !)T

	
= CRB

d
!; (27)

and
E
�
(�̂� �)(�̂� �)T

	
= CRB

d
�: (28)



ONE-DIMENSIONAL MODE ALGORITHM FOR TWO-DIMENSIONAL
FREQUENCY ESTIMATION

Dunmin Zheng 1 Jian Li 1 Petre Stoica 2

1Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611-2044, USA.
2Department of Technology, Uppsala University, P. O. Box 27, S-751 03 Uppsala, Sweden.

Abstract

This paper describes how the computationally e�cient one-
dimensional MODE (1D-MODE) algorithm can be used to
estimate the frequencies of two-dimensional complex sinu-
soids. We show that the 1D-MODE algorithm is computa-
tionally more e�cient than the asymptotically statistically
e�cient 2D-MODE algorithm, especially when the num-
bers of spatial measurements are large. We �nd that the
1D-MODE algorithm is asymptotically statistically e�cient
for high signal-to-noise ratio. We also show that although
1D-MODE is no longer statistically e�cient when the num-
ber of temporal snapshots is large, the performance of 1D-
MODE can still be very close to that of the 2D-MODE
under mild conditions. Numerical examples comparing the
performances of the 1D-MODE and 2D-MODE algorithms
are also presented.

1. INTRODUCTION

In [1], we presented a two-dimensional MODE (2D-MODE)
algorithm for estimating 2-D frequencies. There are many
applications for 2-D frequency estimation, which include
angle-of-arrival estimation with a 2-D sensor array and syn-
thetic aperture radar imaging [1]. Compared with the ex-
act maximum likelihood estimator, the 2D-MODE algo-
rithm avoids the multidimensional search over the parame-
ter space [2]. Yet 2D-MODE has been shown to be statisti-
cally e�cient under either the assumption that the number
of temporal snapshots is large or the signal-to-noise ratio
(SNR) is high.
The purpose of this paper is to describe how the com-

putationally e�cient one-dimensional MODE (1D-MODE)
algorithm [3] can be used to estimate the frequencies of 2-D
complex sinusoids. We show that the 1D-MODE algorithm
is computationally more e�cient than the 2D-MODE, espe-
cially when the numbers of spatial measurements are large.
We also �nd the 1D-MODE algorithm is statistically ef-
�cient for high signal-to-noise ratio (SNR). Even thought
the 1D-MODE algorithm is no longer statistically e�cient
when the number of temporal snapshots is large, its per-
formance can still be very close to that of the 2D-MODE
under mild conditions. Numerical examples comparing the
performances of the 1D-MODE and 2D-MODE algorithms
are included in this paper.

2. PROBLEM FORMULATION

Consider the following model of 2-D complex sinusoids in
additive noise:

ym;m(tn) =

KX
k=1

KX

k=1

�
k;k

(tn)e
j(!

k
m+�

k

m) + em;m(tn); (1)

where m = 1; 2; � � � ;M , m = 1; 2; � � � ;M , and n =
1; 2; � � � ;N . We refer to M (M > K) and M (M > K)

as the numbers of spatial measurements, and to N as the
number of temporal snapshots. The additive noise em;m(tn)
is assumed to be a complex Gaussian random process with
zero-mean and

Efem;m(tn1)e
�

m;m(tn2)g = �
2
�n1;n2 ; (2)

where (�)� denotes the complex conjugate and �n1;n2 de-
notes the Kronecker delta. The em;m(tn), m = 1; 2; � � � ;M ,

m = 1; 2; � � � ;M , are also assumed to be independent of
each other and the complex sinusoids. The complex am-
plitudes �

k;k
(tn), k = 1; 2; � � � ;K, k = 1; 2; � � � ;K, may be

modeled either as the stochastic (or unconditional) signal
model or as the deterministic (or conditional) signal model
[4, 5].

Let Y(tn) and E(tn) beM�M matrices whose (m;m)th
elements, respectively, are ym;m(tn) and em;m(tn). De�ne

X(tn) to be a K � K matrix whose (k; k)th element is
�
k;k

(tn). Let

A = [ a(!1) � � � a(!K) ]; (3)

a(!k) = [ ej!k � � � e
jM!

k ]T ; (4)

B = [ b(�1) � � � b(�
K
) ]; (5)

and
b(�

k
) = [ ej�k � � � e

jM�
k ]T ; (6)

where k = 1; 2; � � � ;K;k = 1; 2; � � � ;K; and (�)T denotes the
transpose. Then Y(tn) can be written as

Y(tn) = AX(tn)B
T + E(tn): (7)

The problem of interest herein is to estimate !1, !2, � � �,
!K and �1, �2, � � �, �K from Y(tn), n = 1; 2; � � � ;N .

3. 2-D FREQUENCIES ESTIMATES WITH
1D-MODE

First consider using 1D-MODE to estimate
! = [!1; !2; � � � ; !K]

T . Let

R̂! =
1

N

NX
n=1

Y(tn)Y
H (tn); (8)

where (�)H denotes the complex conjugate transpose and

R̂! is the estimate of the following spatial covariance ma-
trix:

R! = E
�
Y(tn)Y

H(tn)
	
= AP!A

H +M�
2
I; (9)


