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ABSTRACT

The estimation of the frequencies of sinusoids in noise is a
very common problem. This paper addresses the estimation
of sinusoids in a low SNR environment. This sinusoidal fre-
quency estimation problem can be used to �nd the carrier
frequencies and baud rates of communication waveforms af-
ter some appropriate nonlinearity.
If the underlying signal model is sinusoids in white Gaussian
noise and we use the forward/backward prediction frame-
work, then the forward/backward prediction equations force
a Toeplitz/Hankel structure on the data matrix. If there are
M distinct sinusoids in the data and no noise, then the data
matrix has rank M .
Cadzow and Wilkes [1] enhance a noisy data matrix by en-
forcing both the structure and the rank of the data ma-
trix, before solving for the coe�cient vector of the predic-
tion problem. Besides the Toeplitz/Hankel structure, I also
enforce the estimated singular values of the data matrix.
Using more information extracted from the original data
matrix extends the threshold to lower SNR values.

1. INTRODUCTION

In the following I propose a new algorithm for signal en-
hancement and parameter estimation. As an example the
behavior of the algorithm to estimate the frequencies of
multiple sinusoids in white Gaussian noise is given.
I introduce the problem giving a short overview of the struc-
ture and quantities involved in this particular signal mod-
eling. The next section presents some results concerning
the singular vectors of structured matrices based on ran-
dom samples. The original algorithm and its improvement
is in the following section. A numerical example is covered
in depth in the last section.

2. STRUCTURES AND QUANTITIES

Given N samples of the waveform, the problem is setup as a
forward/backward prediction problem on the data matrix.
This is a standard technique for this problem [5, pg.367].
A sampled mix of sinusoids will satisfy the homogeneous
equation:

a0x(n)+a1x(n�1)+: : :+apx(n�p) = 0; for p+1 � n � N:

Arranging these equations in matrix form, one exhibits the
Toeplitz structure.
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For sinusoids one can also write down the relationship for
the backward prediction (the over bar is the complex con-
jugate):
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Measuring parameters in noisy data, one uses as many equa-
tions as possible. The composite of the two matrices above
is of Toeplitz and Hankel structure. This will be the data

matrix X =
�
XT

XH

�
. In the case of a noise free data matrix

built on a mix of sinusoids, the rank of the matrix is equal
to the number of di�erent complex sinusoids in the signal.
If one wants to estimate the parameters ofM complex sinu-
soids given N noisy sample andM � N , one has to pick the
dimension p for the data matrix. This dimension is often
selected between N

3
and N

2
.

3. SINGULAR VALUES OF STRUCTURED

RANDOM MATRICES

The singular values of a matrix are the square root of the
eigenvalues of the covariance matrix R = X�X (X� is the
transposed, complex conjugate of matrix X).
The eigenvalues �k of the covariance matrix are a continu-
ous function of the random variable xm. The derivative of
the eigenvalues �k with respect to the random variables xm
is from [2]

@�k

@xm
= u

�
@R

@xm
u:

Being the square roots of the eigenvalues the singular val-
ues are also continuous functions of the random variables
xm that represent our noisy signal measurement. If there
are multiple eigenvalues, the eigenvalues can not be guar-
anteed di�erentiable.
The mean and the standard deviation of the singular



values of a structured matrix based on random vari-
ables xk are well de�ned. With no signal present, the
mean and the standard deviation of the singular values
of the data matrix X was numerically computed. For
an 80 � 21 data matrix X I show the mean of the
singular values as a solid line in Figure 1. The er-
ror bars reect one standard deviation around the mean.
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Figure 1. Mean and Std. Deviation of the Singular Values

A data matrix built from random samples exhibits a well
de�ned mean of its sorted singular values. Thus one can
subtract the noise contribution from the singular values re-
covered from the data matrix to get an estimate of the signal
singular values.

4. ALGORITHMIC DEVELOPMENT

4.1. Standard Enhancement

Cadzow and Wilkes [1] enhance the signal using an itera-
tive technique. This technique is very close to the Inverse
Eigenvalue Problem (IEP) [2]. The IEP is a standard prob-
lem in mathematics.
This is the signal enhancement algorithm of Cadzow and
Wilkes to �nd M distinct sinusoids:

Given the data matrix X =

�
XT

XH

�
:

a) Compute the SVD of X and �nd the Mth rank approxi-
mation by keeping the largestM singular values and setting
the remaining singular values to zero.
b) Compute the Toeplitz/Hankel approximation to the low-
rank matrix by averaging over the respective diagonals.
Since step b) will increase the rank of the matrix, iterate
step a) and b) till some convergence is achieved.
Once convergence is achieved towards a low-rank, struc-
tured matrix, one can use the SVD method [3]. The rankM

enhanced data matrix X̂ is decomposed into its �rst column

x̂1 and the remaining p columns X̂r: X̂ =

�
x̂1

... X̂r

�
:

The coe�cient vector a =
�
1
ar

�
is computed from:

ar = �X̂
y

x̂1;

where y denotes the pseudo inverse. The frequencies are
detected using the function d(f):

d(f) =
1

j
Pp

n=0
anej2�fnj

:

4.2. Removing the Noise Floor

The new algorithm improves on the above in the following
way:
Instead of letting the algorithm pick the singular values of
the low-rank approximation of the Toeplitz/Hankel matrix
at each step, the M largest singular values are computed
at the �rst step and then stay �xed for the rest of the it-
eration. This restricts the movement of the singular values
and utilizes the given information more fully than the above
algorithm.
A straight forward implementation of this algorithm will ac-
tually result in a slight loss of performance compared to the
Cadzow/Wilkes algorithm. The important factor to note is
that in a low SNR environment the largest M singular val-
ues are also corrupted by noise.
One heuristic way to estimate the inuence of the noise on
the largest singular values is to compute the SVD for noise
realizations without the signal repeatedly. If one wants to
compute the parameters of M sinusoids, then p + 1 �M

singular values are based on the noise only. The smaller
p+1�M singular values can be used to estimate the noise
contribution to the M larger singular values.
Here I considered only a linear relationship between the
singular values. Collecting the ordered singular values in
a matrix S, where the rows of the matrix correspond to
one noise realization and SVD evaluation. Then the ma-
trix S = (SL SS ) can be decomposed into its �rst M
columns corresponding to the M larger singular values in
SL and the smaller ones in SS . To estimate the larger
singular value on the basis of the smaller singular values
one introduces the matrix B (IM is the identity matrix

of size M): B =
�

IM
�S

y

S � SL

�
: Given a row vector s of

the singular vales, the signal singular values are computed
as: ŝ = ( sB 01�p+1�M ) : The singular values have to be
positive and ordered. If the above estimation violates this
constraint, then I replace the estimated singular value that
violates these constraints. Substitute the estimated singu-
lar value by the sum of the di�erence of the original noisy
singular values and the last estimated singular value, that
satis�ed the constraints. This is done from the smallest es-
timated singular value to the largest, to ensure the ordering
of the singular values.
This gives the following algorithm (Here diag(s) is the di-
agonal matrix D built on the vector s):
Compute the SVD of the data matrix X = U0 diag(s0)V

�

0

and estimate the signal singular values ŝSignal =
( s0B 01�p+1�M ).
For k=1 to L do f

a) Construct an enhanced data matrix X̂ using the esti-
mated signal singular values and the corresponding singular
vectors from the last SVD computation.

Xk = Uk�1 � diag(ŝSignal)V
�

k�1:



b) Compute the Toeplitz/Hankel approximation to the low-
rank matrix by averaging over the respective diagonals.
c) Compute the SVD of the matrix Xk = Uk diag(sk)V

�

k .
g

Construct an enhanced data matrix X̂ using the estimated
signal singular values and the corresponding singular vec-
tors from the last SVD computation.

XL+1 = UL diag(ŝSignal)V
�

L :

As in the standard enhancement, the enhanced data ma-
trix X̂L+1 is used to �nd the coe�cient vector a and the
frequencies f by evaluating the detection function d(f).

4.3. Inverse Eigenvalue Problem

In [2] Friedland et. al. give methods for the solution of in-
verse eigenvalue methods. This application di�ers from [2]
in that instead of the eigenvalues, the singular values of the
data matrix X are given. These are the eigenvalues of the
autocorrelation matrix R = XHX. (XH is the conjugate
complex transpose of the matrix X.)
Similar to the IEP, the structure of the data matrix imposes
constraints on the solution. The number of structural im-
posed constraints (=equations) vs. the number of available
variables of a rank M approximation indicate an over de-
termined system of equations. This over determination is
the reason for the signal enhancement that is possible using
these algorithms.

5. NUMERICAL EXAMPLE

5.1. Data

Similar to the example in [1], the algorithms were tested by
the data:

x(n) = e
j2�(0:2)n + e

j2�(0:21)n +w(n) n = 1; 2; : : : ; 60;

where w(n) is white noise. The frequencies of two sinu-
soids were estimated at each try. The SNR was varied in
1dB steps and the statistics were collected over 1000 noise
realizations.

5.2. Algorithm

The algorithms tested are:
1) forward/backward linear prediction without signal en-
hancement
2) standard enhancement as de�ned in [2], by enforcing a
rank of 2 and a Toeplitz/Hankel structure on the data ma-
trix,
3) new algorithm, where the noise oor is removed from
the �rst two singular values and the rest of the singular
values is set to zero. These singular values as well as the
Toeplitz/Hankel structure of the data matrix is enforced.
The dimension of the combined Toeplitz/Hankel matrix was
80�21. The singular values of a noise only data matrix were
computed over 10,000 noise realizations. The two largest
singular values are predicted from the next two singular
values. The numerical values for the estimation of the noise
component in the two largest singular values �Noise

1 and
�Noise
2 were:

�
�Noise
1

�Noise
2

�
=
�
1:0564 0:1151
0:7949 0:3267

��
�3

�4

�
:

If the subtraction of the noise component destroyed part or
all of the ordering

�NoiseRemoved
1 > �NoiseRemoved

2 > 0;

then the estimates which did not conform to the ordering
were replaced by di�erences of the original singular values.

5.3. Algorithm Evaluation

To evaluate the algorithms one wants to separate the inu-
ence of the:
1) Failure to resolve the frequencies due to low SNR and
2) Variance of the frequency estimate due to the presence
of noise.
To di�erentiate between the two failure modes over a wide
range of SNR, resolution of the sinusoid was de�ned as
the two frequencies being resolved within an interval of
(0:2 � 10�(SNR),0:21 + 10�(SNR)). Here � is the stan-
dard deviation of the frequencies predicted for the SNR by
the Cramer Rao bound. If the resolution interval is selected
too narrow, then:
1) the resolution of the frequencies will reect the desired
ability to resolve the frequencies correctly, but
2) the tails of the frequency distribution are cut o�, re-
sulting in a low estimate of the mean square error of the
frequencies.
Thus the resolution interval is a compromise between the
ability to correctly characterize resolution and estimate a
well behaved standard deviation of the frequency distribu-
tion. The resolution interval vs SNR is graphed in Figure 2.
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Figure 2. Resolution Interval over SNR

Cadzow and Wilkes [1] used a �xed interval of (0.17,0.24).
This corresponds roughly to the interval given here at -5dB.
Figure 3 gives the percentage of resolution for the dif-
ferent algorithms (higher is better). In a low SNR en-
vironment the new algorithm with the noise oor re-
moved has about a 10dB advantage over the standard
enhancement to reach corresponding resolution levels.
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Figure 3. Resolution percentages

Removing the noise oor in the singular values allows also
to track the Cramer-Rao bound better than the standard
enhancement (Figure 4). As published in [1] the standard
enhancement improves on the forward/backward prediction
method.
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Figure 4. Cramer-Rao bound results

Due to the relatively small numbers of experiments, remov-
ing of the tails of the frequency distribution when consider-
ing only correctly resolved frequencies and approximations
in computing the Cramer-Rao bound the results violate the
Cramer-Rao bound in some instances [4, 6].

5.4. Time Sequence Sinusoidal Signal Enhance-

ment

Enforcing the noise free estimates of the two largest singular
values can be used to clean up noisy signals. An example
is shown in Figure 5. The real part of the complex signal
is drawn as a solid line, the imaginary part is drawn as a
dashed line. The top sub plot shows the mix of sinusoids
of amplitude 1 and the frequencies of 0.2 and 0.21 and the
phases -30 and 30 degrees respectively. The middle sub

plot displays these sinusoids in AWGN for an overall SNR
of -5dB. After 5 iterations of the algorithm, the signal is
recovered by averaging over the entries in the data matrix
corresponding to the Toeplitz/Hankel structure. The en-
hanced signal is shown in the bottom sub plot of Figure
5. The slight beat frequency in the signal is one indication
that both frequency are resolved correctly in the resulting
signal.
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Figure 5. Time Sequence Sinusoidal Signal Enhancement

6. CONCLUSION

An improved algorithm for �nding the frequencies of sinu-
soids in a low noise environment was presented. It relies
on the matching computed singular values to a matrix with
Toeplitz/Hankel structure. Its performance improves on the
previously given algorithms.
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