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ABSTRACT

Sinusoidal signals with random time-varying amplitude
show up in many signal processing applications. Am-
plitude modulation results in degeneracy of the signal
subspace, i.e. the signal subspace corresponding to one
amplitude modulated sinusoid is no longer spanned by
one vector. In this paper, we propose modi�cations of
two subspace-based techniques, namely ESPRIT and
MODE for estimating the center frequency of a sinu-
soidal signal with random time-varying ARMA ampli-
tude. Numerical simulations illustrate the good per-
formance of the methods. Finally, a robusti�ed scheme
of the proposed methods is described and succesfully
applied to real radar data.

1. PROBLEM STATEMENT

Analysis of sinusoidal signals with random or time vary-
ing amplitude appears to be of importance in many
�elds of signal processing. In the radar application,
as soon as the target scintillates or with targets that
cannot be considered as points, a random amplitude
model is more appropriate than a constant amplitude
one[1]. This problem is also encountered in the array
processing context when the source signals impinge on
the array over a spread of angles [2]. Most of the time,
the amplitude may be viewed as a perturbation term
(a "multiplicative noise") and a key problem consists
of estimating the center frequency of such processes.
From a spectral point of view, multiplicative noise is
more di�cult to cope with, random modulation caus-
ing a spread of the peak. Subspace-based techniques,
which have proved to be powerful in the constant am-
plitude case, deteriorate in the case of a random ampli-
tude. As a matter of fact, unless speci�c assumptions
are made on the envelope, the signal subspace is degen-
erate, i.e. it has spread into a higher than one dimen-
sional subspace. Consequently, subspace-based meth-

ods, which rely on a clear discrimination between signal
and noise subspaces are no longer suitable. Therefore,
there is an interest in proposing subspace-based meth-
ods that properly handle the case of random ampli-
tude signals. This is the aim of this paper. More pre-
cisely, we propose to use modi�cations of ESPRIT[3]
and MODE[4] algorithms in order to estimate the fre-
quency of an exponential signal with random ARMA

amplitude. Moreover, as we focus on the frequency es-
timation (and not on the ARMA amplitude parameter
estimation), we describe simpli�cations of these two
methods, which reduce the associated computational
burden.

2. MODEL AND FREQUENCY

ESTIMATION

Let us consider the problem of estimating the frequency
!0 from N samples of the following signal

x(t) = �(t)ej(!0t+') +w(t); t = 1; :::; N (1)

where ' is a deterministic phase, w(t) is a sequence of
zero-mean i.i.d. random variables with variance �2

w
.

In (1), �(t) is assumed to be a real-valued station-
ary ARMA(p; q) process, independent of w(t). Let
S�(z) = �2B(z)B(z�1)=

�
A(z)A(z�1)

	
denote the spec-

trum of �(t) and de�ne by
�
yk = �ke

j�k
	
k=1::p

the ze-

roes of A(z). It can be readily veri�ed that the spec-
trum Sx(z) has the following ARMA(p; p) form:

Sx(z) =
�2C(z)C(z�1)

A(ze�j!0)A(z�1ej!0)
(2)

from which the following set of Yule-Walker equations
can be written:

rx(� ) = �

pX
k=1

ake
jk!0rx(� � k); � > p (3)



By inspection of (2), the poles of Sx(z) are simply zk =
yke

j!0 = �ke
j(!0+�k). This property forms the basis

for the algorithms to be proposed. As a matter of fact,
!0 can be extracted from the poles of the equivalent

ARMA spectral model as follows (herein arg(�ej�)
def

=
�):

!0 =
1

p
arg

 
pY

k=1

zk

!
(4)

= arg

 
pX

k=1

zk

!
(5)

where we have used the fact that both
Q

p

k=1
yk andP

p

k=1
yk are real-valued. Hence, the problem of esti-

mating!0 is reduced to that ofARMA pole estimation.
Let R denote the M �m covariance matrix with ele-
mentsR(k; n) = rx(m+k�n), withm � p andM � p.
By the Yule-Walker equations (3), R is of rank p. Let

R = S�G
H =

pX
k=1

�kukv
H

k
(6)

denote its SVD with � = diag(�1; :::; �p),
S = [u1; :::;up] and G = [v1; :::;vp].

2.1. ESPRIT

Let us partition S into all but last (�rst) row:

S =

�
S1
�

�
=

�
�

S2

�
(7)

The basic property that underlies ESPRIT[3] can be
formulated in eq. (8) (where C is a nonsingular trans-
formation matrix):

S2 = S1C
�1DC (8)

where D = diag
�
�1e

j(�1+!0); :::; �pe
j(�p+!0)

�
. (8) is an

overdetermined system of M linear equations that can
be solved for � = C�1DC. Since S1;S2 have full rank,
it follows that the solution is given by

� =
�
SH1 S1

��1 �
SH1 S2

�
(9)

Moreover, D is the diagonal matrix of the eigenvalues
of �. Therefore, the ARMA poles can be estimated

as the eigenvalues of
�
SH1 S1

��1 �
SH1 S2

�
. Using (4), we

have

!0 =
1

p
arg

 
pY

k=1

zk

!
=

1

p
arg (det (D))

=
1

p
arg (det (�)) =

1

p
arg
�
det
�
SH1 S2

��
(10)

If we let bS1; bS2 denote sample estimates of S1;S2 re-
spectively, then !0 is estimated as

b!d0 = 1

p
arg
�
det
�bSH1 bS2�� (11)

which enables to avoid the second EVD required in the
standard ESPRIT. An alternative way to compute !0
from S2;S1 is by the use of (5). More exactly, one has

!0 = arg

 
pX

k=1

zk

!
= arg (tr(D))

= arg
�
tr
�
SH1 S1

��1 �
SH1 S2

��
(12)

which leads to the alternative ESPRIT-based frequency
estimate

b!t
0
= arg(tr[(bSH

1
bS2)�1(bSH1 bS2)]) (13)

2.2. MODE

The main idea behind the MODE method [4] is to
reparametrize the noise subspace in terms of a pth de-
gree polynomial whose roots yield the ARMA pole fre-
quencies. More exactly, let:

C(z) =

pX
k=0

ckz
p�k = c0

pY
k=1

(z � zk) (14)

Therefore, according to (4) and (5), !0 can be retrieved
simply as

!0 =
1

p
arg((�1)p � cp=c0) (15)

= arg(�c1=c0) (16)

Let us de�ne

BH =

0
BB@

cp cp�1 : c0 0
cp :

: :

cp c0

1
CCA (17)

We �rst note that rank(B) = m � p. Moreover, using
the Yule-Walker equations (3), it can be easily checked
that

BHR = 0) BHS = 0 (18)

which implies that B spans the noise subspace of R.
The MODE algorithm estimates the coe�cients fckg
by minimizing the following cost function

f(c) = tr
h
BBHbSWbSHi (19)

where W is a positive de�nite weighting matrix. Since
the singular vectors in bS are usually estimated with



an accuracy that is proportional to the correspond-
ing singular values, a good choice for W is given by
W = diag(b�1; :::;b�p) = b�. f(c) in (19) can be rewrit-
ten in the following form, more amenable to numerical
minimization:

f(c) = cH b
c (20)

where b
 is a p � p matrix which can be easily con-
structed from W and bS. The previous function must
be minimized with an appropriate constraint. Here,
we impose kck = 1, so that the solution is given by the

smallest eigenvector of b
. Once an estimate bc of c is
available, the two forms of frequency estimate discussed
before are implemented as:

b!d0 = 1

p
arg((�1)p � bcp=bc0) (21)

b!t0 = arg(�bc1=bc0) (22)

3. NUMERICAL ILLUSTRATIONS

In this section, the performance of ESPRIT and MODE
frequency estimators is �rst examined via Monte-Carlo
simulations. Secondly, an application to real radar data
is presented.

3.1. Monte Carlo simulations

In this section, we illustrate and contrast the respec-
tive performances of the four estimators (11), (13), (21)
and (22). In what follows, the envelope is selected as
an AR(2) process with poles at �e�j2�f and the vari-
ance of the driving noise is �2 = 0:1. We successively
investigate the performance of the frequency estimates
as a function of N (cf. Fig. 1) and the lowpass en-
velope parameter f (see Fig. 2). In all simulations,
the sinusoid frequency is selected as !0 = 2� � 0:18
and 500 Monte-Carlo simulations are run to estimate
the variances of the estimated frequency. The additive
noise variance is chosen as �w = 0:01.

It can be seen that the determinant and trace method
are practically equivalent. Additionally, MODE is ob-
served to perform slightly better than ESPRIT. Figure
2 also reveals that the estimation performances remain
quite stable over a wide range of frequencies.

3.2. Application to radar data

In this section we consider the problem of estimating
the speed of trains from an on-board Doppler radar.
So far, trains' speed is measured by means of a wheel
which delivers impulses each time a certain distance is
run. In most of the trains, the wheel is not equipped
with an "anti-skid system" which means that when the
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Figure 1: Variance of ESPRIT and MODE versus N .
M = 15, m = 10, � = 0:95 and f = 0:01

train brakes or accelerates, the wheel is spinning re-
sulting in a loss of accuracy. To remedy this prob-
lem, an on-board Doppler radar sends a continuous
wave towards tracks and receives the echoes. After de-
modulation, the signal consists of a sinusoidal signal
(whose frequency can be used to determine the train's
speed) with a slowly uctuating envelope. An impor-
tant drawback of parametric methods when applied to
real data is that their performance may seriously de-
grade when the model does not perfectly �t the received
data. Therefore, designing robust algorithms is a key
issue. We now propose a scheme that could "robustify"
our algorithm without penalizing too much of its per-
formance. We propose to apply the frequency estima-
tion algorithms with an increasing number of "signal"
singular vectors, until a "breakdown" is observed in the
value of the estimated frequency. If a singular vector
which does not contain information about the signal is
included in the algorithm, this will typically result in a
frequency estimate which is not plausible in the sense
that it is out of a prede�ned range (which can be deter-
mined from the current train's speed and its maximum
acceleration). We now formalize the idea above. From

the sample covariance matrix bR, we form a complete
orthogonal decomposition of it (a QRD with column
pivoting is used in what follows) which provides a ba-

sis for the span of bR [bu1; :::;bum]. Then the scheme in
Table 1 is applied.

If the envelope varies very slowly, then selecting
only one singular vector will provide an accurate es-
timate (see [5]). The inclusion of additional singular
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Figure 2: Variance of ESPRIT and MODE versus f .
N = 300. M = 20, m = 10 and � = 0:95.

1: k = 1

2: De�ne bSk = [bu1; :::;buk]
3: Compute b!k0 from bSk.
4: if b!k0 is "plausible"

go to 2 with k = k + 1, otherwise exit with b!k�1
0

.

Table 1: Robusti�ed scheme for estimating !0.

vectors will provide a plausible frequency as long as
the envelope varies su�ciently rapidly for being mod-
eled by a sum of k damped harmonics. We illustrate
the behavior of this "robusti�ed" algorithm when ap-
plied to real radar data recorded on-board a train. In
the experiments described below, a non-skidding wheel
provided information about the distance run by the
train. More exactly, each 10 meters an impulse is de-
livered to indicate the distance. This provides a refer-
ence against which the estimate obtained with our al-
gorithm is compared. The radar data was divided into
successive (non-overlapping) blocks of N = 512 points;
the sampling frequency was equal to16kHz. The pa-
rameters were selected as M = 30 and m = 10. The
distance is then estimated by integrating over time the
estimated speed, assuming that the speed is constant
over a block of N samples. Each time a reference im-
pulse is delivered, the estimated distance is compared
with the true value, i.e. 10 meters. In case 1, a total
number of 13460 meters were run, 4560 in 2nd case.
Tables 2,3 list the results obtained, for each case, using
either the ESPRIT or the MODE estimator. In these
tables, d denotes the mean value of the distance esti-
mate, std its standard deviation. The two last lines

indicate the percentage of times the dimension of the
signal subspace (SS) was selected as one or two.

ESPRIT MODE

d 9:9069 9:923
std 0:088 0:083

dim(SS) = 1 37:5% 59:8%
dim(SS) = 2 62:5% 40:2%

Table 2: Results obtained in case 1

ESPRIT MODE

d 10:005 9:988
std 0:0562 0:088

dim(SS) = 1 54:8% 58:1%
dim(SS) = 2 45:2% 41:9%

Table 3: Results obtained in case 2

As can be seen from these tables, the two estima-
tors provide an accurate value of the true distance.
Additionally, they give estimates close to each other,
which con�rms the observations made on simulated
data. Moreover, we note that, in a non negligible way,
two vectors were used to estimate the Doppler fre-
quency, which proves the usefulness of varying the di-
mension of signal subspace to take into account the
uctuating amplitude.
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