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ABSTRACT

In a previous paper we have presented a novel method for
spatial and temporal frequency estimation assuming that
the sources are uncorrelated. The current contribution an-
alyzes this method in the case of spatial frequency estima-
tion. In particular an optimal weighting matrix is derived
and it is shown that the asymptotic variance of the fre-
quency estimates coincides with the relevant Cram�er-Rao
lower bound. This means that the estimator is in large sam-
ples an e�cient subspace-based spatial frequency estimator.
The proposed method thus utilizes the a priori knowledge
about the signal correlation as opposed to previously known
subspace estimators. Moreover, when a uniform linear ar-
ray is employed, it is possible to implement the estimator
in a non-iterative fashion.

1. INTRODUCTION

Estimating frequencies from uniformly sampled data has
been an active research area for decades. A number of, so
called, high resolution algorithms or eigenstructure meth-
ods have been presented and analyzed in the literature, e.g.,
[1{4]. One disadvantage with these subspace based methods
is that it is di�cult to incorporate knowledge of the source
correlation into the eigendecomposition. In [5] we proposed
an estimator which combines ideas from subspace and co-
variance matching methods. The objective was to �nd a
frequency estimator which uses the knowledge of the signal
correlation. This method uses the geometrical properties of
the eigendecomposition of the data covariance matrix and
is valid for a large class of problems such as spatial and
temporal frequency estimation. In this paper we specialize
to spatial frequency or direction of arrival estimation and
the large sample performance is analyzed.

2. MODEL DESCRIPTION

The well known problem of estimating spatial frequencies
from uniformly sampled data corrupted by additive white
noise can be reduced to the problem of determining the
parameters in the following model of the data covariance
matrix

R = A(!)SA
�
(!) + �

2
I : (1)

The d � d matrix S denotes the unknown diagonal signal
covariance matrix, �2 is the unknown noise variance and
the m� d matrix A(!) is the sensor array steering matrix
where m > d denotes the number of sensors. If a uniform
linear array (ULA) of identical omni-directional sensors is

employed, A(!) takes the form

A(!) =

0
BBB@

1 � � � 1

ei!1 � � � ei!d

...
...

ei(m�1)!1 � � � ei(m�1)!d ;

1
CCCA (2)

where ! = [!1; � � � ; !d]T. Notice thatA is full column rank
when the frequencies are distinct. In the spatial frequency
estimation problem, the matrix A is often parameterized
by the direction of arrivals (DOAs) denoted by �. For a
ULA, the relationship between ! and � is given by !k =
2��sin(�k), where � is the element spacing measured in
wavelengths, and where �k is measured relative to the array
broadside. Throughout the paper it is assumed that each
column in A depends on a single parameter.

3. FREQUENCY ESTIMATION

This paper focuses on the estimation of the frequencies

! = [!1; � � � ; !d]T. In doing this we would like to use the
knowledge that the signals are uncorrelated to improve es-
timation accuracy.
The subspace estimation techniques rely on the properties

of the eigendecomposition of (1). Let

R = Es�sE
�

s +En�nE
�

n : (3)

be a partitioned eigendecomposition, where �s is a diago-
nal matrix containing the d largest eigenvalues and where
the columns of Es are the corresponding eigenvectors. Sim-
ilarly, �n contains the m�d smallest eigenvalues and En is
built of the remaining eigenvectors. Since A is assumed to
be full rank and since S is positive de�nite, it follows that
�n = �2I. Using the fact EnE

�

n = I�EsE
�

s , it follows from
(1) and (3) that

ASA
�
= Es�E

�

s ; (4)

where � = �s � �2I. By using the vec-operator (vec(D) is
a vector obtained by stacking the columns of D), (4) can

be written as
�
vec(XYZ) =

�
ZT 
X� vec(Y)

�

(A
c 
A) vec(S) = (E

c
s 
Es) vec(�); (5)

where 
 denotes the Kronecker matrix product, and where
(�)c denotes complex conjugation. Since S and � are di-

agonal matrices, there exists a (d2 � d) selection matrix L
such that vec(S) = Ls and vec(�) = L�, where s and �

are vectors consisting of the diagonal entries of S and �,
respectively. Notice that (Ac 
A)L = (Ac �A) where �
denotes the Khatri-Rao matrix product which is column-
wise Kronecker product.



Let R̂ denote the usual sample estimate of the theoretical
covariance matrix, i.e., the average of the outer products of
the array output vectors, and let

R̂ = Ês�̂sÊ
�

s + Ên�̂nÊ
�

n (6)

be the eigendecomposition of R̂ similar to (3). Replacing

Es by Ês and � by �̂s� �̂2I, where �̂2 = Trf�̂ng=(m�d),
in (5) yields

(A
c �A) s �

�
Ê
c
s � Ês

�
�̂ (7)

or with obvious de�nitions

B(!)s � f̂ : (8)

The least-squares estimate of s is

ŝ = B
y
(!)f̂ ; (9)

where By denotes the Moore-Penrose pseudo-inverse of B.
We now suggest to estimate the frequencies by minimizing
the weighted norm of the residuals obtained by substituting
ŝ back into (8), that is,

!̂ = argmin
!

V (!); (10)

V (!) = kP?B(!)f̂k2W = f̂
�
P
?

B(!)WP
?

B(!)f̂ ; (11)

where P?B = I �BBy is the orthogonal projector onto the
null-space of B�. In (11),W is a Hermitian positive de�nite
weighting matrix.
In the next section the asymptotic properties of the esti-

mates given by (10) are analyzed. The implementation of
the estimator is discussed in Section 5.

4. ANALYSIS

The asymptotic behavior of the estimates (10) is analyzed

in this section. To simplify notation, we write P? in lieu

of P?B. We also use !0 to distinguish the true frequency
vector from a generic vector !.
In [7] we prove that !̂ given by (10) is strongly consistent,

that is, !̂ ! !0 with probability one as N tends to in�nity.
After establishing consistency, the asymptotic distribution
of the estimates from (10) can be derived through a Taylor
series expansion approach; see e.g. [4, 6]. By de�nition
V 0(!̂) = 0 and since !̂ is consistent, an expansion of V 0(!̂)
around !0 leads to

~! ' �H�1
V
0
(!0); (12)

where ' denotes equality in probability up to �rst order,
and where H = limN!1 V 00(!0) and ~! = !̂ � !0. The
derivative of (11) with respect to !i is

Vi = f̂
�
P
?

i WP
?
f̂ + f̂

�
P
?
WP

?

i f̂

' �2Reff�By�B�iP?WP
?
f̂g;

(13)

since P?i = �By�B�iP? �P?BiB
y. It is shown in Ap-

pendix A that, asymptotically, f̂ =M vecfR̂g for a certain

transformation M. Since the elements in
p
N(R̂ �R) are

asymptotically Gaussian distributed, the same is true forp
NV 0 and

p
N ~!. Hence, we have the following result.

Theorem 1. The estimate !̂ from (10) is a consistent es-
timate of !0 and the normalized estimation error is asymp-
totically Gaussian distributed according to

p
N(!̂ � !0) 2 AsN(0;�) (14)

where

� = H
�1
QH

�1
: (15)

The matrices H and Q are given by

H = 2Re
n
SD

�
P
?

BWP
?

BDS
o
; (16)

Q , lim
N!1

N EfV 0
V
0T g = 2Re

�
U
� �CU

c
+U

�
CU

	
:

(17)

Here,

D =
�
�D
c �A�+ �

A
c � �D

�
; (18)

�D =

�
@a(!)

@!

���
!1

: : :
@a(!)

@!

���
!d

�
; (19)

U = P
?

BWP
?

BDS; (20)

where a(!) denotes a column of A(!). The two covariance

matrices C and �C are de�ned as

C = lim
N!1

N Ef~f~f�g; (21)

�C = lim
N!1

N Ef~f~fT g; (22)

where ~f = f̂ � f . Explicit expressions for C and �C can be
found in Appendix A. All quantities are evaluated in !0.

Proof. The expressions for H and Q are derived in Ap-
pendix B.

The above result is valid for any Hermitian positive de�nite
weighting W. The optimal choice of W in terms of mini-
mizing the asymptotic covariance matrix � is provided by
the following corollary.

Corollary 1. Let

W =Wopt , [P
?

B
~CP

?

B +BB
�
]
�1

; (23)

where

~C = C+ �
4
�
P
?
T

A 
P?A
�

=
�
R
T 
R

�
+

�4

m� d
vecfPAg vec�fPAg;

(24)

and where PA = I�P?A = EsE
�

s. Then

� = CRB!; (25)

where CRB! is the Cram�er Rao lower bound on the estima-
tion error variance of ! corresponding to the prior knowl-
edge that the signals are uncorrelated.

Proof. The proof can be found in [7].

The result of the corollary implies that the estimator (10)
with the weighting (23) is asymptotically equivalent to the
maximum likelihood estimator that also uses information
about the signal correlation. The gain in using (10) lies in
the possibility that it may be easier to minimize (11) than
the likelihood function. As described in the next section
it is in fact possible to solve the minimization of (11) non-
iteratively if a ULA is employed.



5. IMPLEMENTATION

One may directly observe that the optimal weighting (23)
depends on unknown quantities. However, it can be shown
thatWopt can be replaced with a consistent estimate with-
out changing the asymptotic properties; c.f. [4]. For general
arrays, (10) can be solved by a Newton-type method. In the
following we will however discuss a way to avoid the non-
linear minimization that usually is necessary. If a ULA is
employed, a technique similar to the one used in MODE
[2, 8] can be utilized. The idea is to �nd a basis for the
null-space of B� that depends linearly on a minimal set of
parameters. For this purpose, introduce the following poly-
nomial

g0z
d
+ g1z

d�1
+ � � �+ gd = g0

dY
k=1

�
z � e

i!k

�
(26)

g0 6= 0 :

From the de�nition of B(!) it follows that the kth column
of B is given by

Bk = [1 zk � � � zm�1k

...z
�1
k 1 � � � zm�2k

...z
�2
k � � � zm�3k

... � � �

� � �
...z
�(m�1)

k � � � 1]T (27)

where zk = ei!k . The goal is to �nd a full rank matrix
G of dimension m2 � (m2 � d) such that G�B(!0) = 0.
Below we give two simple examples from which a general
parameterization easily follows. For illustration purposes
we permute the rows of B(!0), and thus the columns of
G�, such that the permuted kth column of B(!0) reads

[z
�m+1

k z
�m+2

k z
�m+2

k z
�m+3

k � � � zm�1k ]
T
: (28)

This permutation will highlight the generalization of the pa-
rameterization of G� given in the examples that follow. In

the �rst example of a permuted G� matrix, ~G�, let m = 3
and d = 1 which implies that we need m2 � d = 8 indepen-

dent rows. One such ~G� is

~G
�
=

2
66666664

g1 g0 0 0 0 0 0 0 0
g1 0 g0 0 0 0 0 0 0
0 g1 0 g0 0 0 0 0 0
0 g1 0 0 g0 0 0 0 0
0 g1 0 0 0 g0 0 0 0
0 0 0 g1 0 0 g0 0 0
0 0 0 g1 0 0 0 g0 0
0 0 0 0 0 0 g1 0 g0

3
77777775
;

which is easily seen to be full rank. In the second exam-
ple we let m = 3 and d = 2, implying that m2 � d = 7
independent rows are needed. In this case one may take

~G
�
=

2
666664

0 �1 1 0 0 0 0 0 0
g2 g1 0 g0 0 0 0 0 0
g2 g1 0 0 g0 0 0 0 0
g2 g1 0 0 0 g0 0 0 0
0 g2 0 g1 0 0 g0 0 0
0 g2 0 g1 0 0 0 g0 0
0 0 0 g2 0 0 g1 0 g0

3
777775
:

In the general case there are d(d� 1)=2 rows with �1 and

m2 � d2=2 � d=2 rows with g-coe�cients. Altogether this

becomesm2�d rows and by construction these rows are lin-
early independent. Observe that the polynomial (26) should
have its roots on the unit circle. For our purposes, this can
be realized by imposing the conjugate symmetry constraint
gi = gcd�i; i = 0; :::; d; see [2, 7] for details.
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Figure 1. MSE for �2 versus the number of snapshots, N :
'o' { proposed method, 'x' { root-MUSIC. The solid line
represents the CRB when the correlation structure of the
sources is known and the dashed line is the CRB without
this knowledge.

Next notice that P?B = GGy and rewrite (11) as

f̂
�
P
?

BWoptP
?

B f̂ = f̂
�
G(G

� ~CG)
�1
G
�
f̂ : (29)

SinceG�f = 0, it is possible to show that the inverse in (29)
can be replaced with a consistent estimate without altering
the asymptotic properties of the estimates. We thus propose
to estimate ! by minimizing

f̂
�
G(Ĝ

� ~̂CĜ)
�1
G
�
f̂ (30)

over the d free real parameters inG (the parameters are real
and imaginary parts of gi under the conjugate symmetry
constraint). Since these parameters enter linearly in G, the
problem can be solved by the solution to an over-determined
set of linear equations. Once the polynomial coe�cients are
given, !̂ is obtained by rooting the polynomial (26). In (30),

~̂C is an estimate of ~C computed from sample data and Ĝ is
constructed from a consistent estimate of !0, for example,
the root-MUSIC estimate.

6. SIMULATION EXAMPLE

To illustrate that the asymptotic expressions may be valid
for quite modest sample sizes we provide an example. Con-
sider the direction of arrival estimation of two waves im-
pinging from angles �1 = 0� and �2 = 10� on a ULA with 5
elements separated by a half wavelength. The uncorrelated
signal sources are modeled as white and circularly symmet-
ric complex Gaussian distributed with a variance of 3 and
10, respectively. The additive noise is spatially and tem-
porally white circularly symmetric complex Gaussian with
variance �2 = 1. The mean-square-error (MSE) for di�er-
ent data lengths are calculated for the proposed method
and for root-MUSIC [1, 9]. Each MSE is based on 200 inde-
pendent trials. The MSE for �2 is depicted in Fig. 1. It is
seen that the new method performs similar to root-MUSIC
but has less variance for large samples.

7. CONCLUSIONS

In this paper the method proposed in [5] was analyzed.
The asymptotic distribution was derived and the asymp-
totic variance was shown to coincide with the Cram�er-Rao



lower bound including knowledge of uncorrelated signals.
It was also shown that the estimator can be implemented
in a non-iterative fashion for uniform linear arrays. This
makes the method quite attractive since it provides mini-
mum variance frequency estimates without having to resort
to non-linear minimization.
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A ASYMPTOTIC RELATIONS FOR THE
RESIDUAL

In this appendix we relate the residual ~f = f̂�f to the sam-
ple covariance matrix and derive the asymptotic covariances

of ~f . From the de�nition of f̂ we get

f̂ = vecfÊs(�̂s � �̂
2
I)Ê

�

sg
= vecfR̂� �̂

2
I� Ên(�̂n � �̂

2
I)Ê

�

ng
' vecfR̂� �̂

2
I�En(�̂n � �̂

2
I)E

�

ng
= vecfR̂� �̂

2
(I�EnE

�

n)�En�̂nE
�

ng:

(31)

Recall that the noise variance is estimated as the average

of the noise eigenvalues in �̂n and notice that

�̂n ' E
�

nR̂En: (32)

We thus asymptotically have

�̂
2
=

1

m� d
Trf�̂ng ' 1

m� d
TrfE�nR̂Eng

=
1

m� d
vec

�fEnE
�

ng vecfR̂g;
(33)

since TrfABg = vec�fA�g vecfBg. After some calculations
we obtain

f̂ = [I�
�
P
?
T

A 
P?A
�
� 1

m� d
vecfPAg vec�fP?Ag] vecfR̂g

,MvecfR̂g;
(34)

where P?A = EnE
�

n = I�EsE
�

s = I�PA. Using (34), it is

straightforward to derive C and �C. Let us start with �C in
(22)

�C = lim
N!1

N EfM vecf ~Rg vecT f ~RgMT

=M
h
vec(R) vec

T
(R)

iBT
M

T
;

(35)

where the superscript `BT' denotes block-transpose and
means that each m �m block is transposed. Similarly we
get for C

C = lim
N!1

N EfM vecf ~Rg vec�f ~RgM�

=M
�
R
T 
R

�
M

�
:

(36)

Using the expression for M given in (34), some tedious cal-
culations lead to the following expression for C:

C =
�
R
T 
R

�
� �

4
�
P
?
T

A 
P?A
�

+
�4

m� d
vecfPAg vec�fPAg:

(37)

The matrix is (as expected) singular and the null space is
spanned by the columns of (Ec

n 
En). The dimension of

the null space is (m� d)2 and consequently the dimension

of the range space of C is m2 � (m � d)2 = 2md � d2.
Notice that this equals the number of real parameters in
the Cholesky-factorization of ASA�.

B DERIVATION OF Q AND H

Consider �rst the Q matrix. De�ne

ui = P
?
WP

?
Bis (38)

which is nothing but the ith column of U in (20). The ijth
element of Q is then, in view of (13), given by

Qij = lim
N!1

N EfViVjg = lim
N!1

N Ef2Refu�i ~fg2Refu�j~fg

= lim
N!1

N Ef2Refu�i ~f~f�uj + u
�

i
~f~f

T
u
c
jg

= 2Refu�iCuj + u
�

i
�Cu

c
jg;

(39)

which is the ijth element of the expression given in (17).
From (13) we get

Hij = lim
N!1

Vij = 2Refs�B�iP?WP
?
Bjsg (40)

which is readily seen to equal the ijth element of (16).


