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ABSTRACT

This paper addresses the problem of estimating parti-
cle's velocity in the vicinity of an aircraft by means of a
laser velocimeter. A model for the signal generated by
a particle of air passing through a probe volume con-
sisting of equidistant bright and dark fringes is given.
From this model, a frequency estimator based on the
phase of the correlation sequence of the signal is pro-
posed. A theoretical analysis of the frequency estimator
is presented. In particular, a formula for the variance of
the estimate is derived under the assumption of small
estimation errors. Numerical examples con�rm the va-
lidity of the analysis. Finally, the e�ectiveness of the
proposed algorithm is demonstrated on real data.

1. OUTLINE

In aeronautics applications, there is a vital interest in
having a reliable way of measuring aircraft's speed.
Moreover, the size and weight of the system in charge of
this task is of primary concern. So far, this problem has
been solved with the help of a Pitot device which mea-
sures a di�erence between a static (i.e. perpendicular
to the ow) and a dynamic pressure (i.e. parallel to
the ow). This di�erence is directly related to the air-
plane's speed. Laser velocimeters have gained popular-
ity in the uid mechanics application, where they have
been used to estimate particles velocity in a ow[1],
mainly for measurements in wind tunnels. This paper
addresses the problem of estimating particle's velocity
in the vicinity of an aircraft by means of a laser ve-
locimeter. To this aim, a symmetric interference fringe
pattern composed of bright and dark fringes is gen-
erated in the vicinity of the aircraft by means of two
coherent laser beams which are crossed and focused. A
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particle of aerosol passing through this probe volume
will alternatively encounter dark and bright fringes,
therefore scattering light according to its velocity. In
the noise free case, the signal recorded by a photode-
tector would consist of a sinusoidal signal (whose fre-
quency is representative of particle's velocity, hence of
aircraft's speed) with a time-varying amplitude of the
form A: exp

�
�2�2f2d t2

	
: In this paper, we address the

problem of estimating the frequency of such a signal. In
[2], we derived the Cram�er-Rao Bound for the problem
at hand and proposed a Maximum Likelihood Estima-
tor of fd. Although the MLE is statistically e�cient, it
requires the minimization of a non-linear function by
means of iterative techniques. As it may be computa-
tionally too much intensive for real-time applications,
an alternative approach is proposed here. Since the
work of Tretter [3] who showed that, in the high Sig-
nal to Noise Ratio (SNR) scenario, an additive white
noise on the signal was equivalent to an additive noise
on the phase, estimators based on the phase of the
signals have been proposed (see e.g. [4],[5]). These
estimators are computationally e�cient, yet possess-
ing good statistical properties. In this paper, a fre-
quency estimator based on the phase of the correlation
sequence of the signal is proposed. It can be viewed
as the generalization of these "phase-based" methods
to an exponential signal with time-varying amplitude.
A theoretical analysis enables to derive the variance
of the frequency estimator, under the assumption of
small estimation errors. Numerical examples con�rm
the validity of the analysis. It is reported that this es-
timator, although simpler than the Maximum Likeli-
hood approach, comes close to the Cram�er-Rao Bound.
Finally, the e�ectiveness of the proposed algorithm is
demonstrated on real data.



2. FREQUENCY ESTIMATION

The problem at hand can be reduced to that of esti-
mating the frequency fd in the following model[2]

x(t) = A:s(t) +w(t)

= Ae�2�
2f2
d
t2ej2�fdt +w(t); t = �N; ::; N(1)

where fw(t)g is assumed to be a complex, circularly
symmetric white Gaussian noise. The parameter fd is
directly related to the particle's speed via the relation
fd =

V
I
where V denotes particle's velocity and I is the

interfringe width. The signal A:e�2�
2f2
d
t2 :ej!dt is of �-

nite energy, preventing from de�ning the correlation as
x(m) = limN!1

1

2N+1

PN

k=�N E fx�(k):x(k +m)g (as
would be the case for quasi-stationary processes). Here,
we de�ne

rx(m)
def
=

N�mX
k=�N

E fx�(k):x(k +m)g (2)

It can be veri�ed that

rs(m) = jAj2 (m):e�2�
2f2
d
m2

ejm!d+�2w(2N�m+1)�m;0
(3)

where (m)
def
=

PN�m
k=�N e�4�

2f2
d
k(k+m) is real-valued.

As the phase of (3) is m!d, a natural estimate of the
frequency !d is given by

!̂ = argmin
!

MX
m=1

[6 r̂x(m) �m!]
2
= C:

MX
m=1

m�̂(m)

(4)

where C = 6

M(M+1)(2M+1)
, �̂(m) = 6 r̂x(m) (herein

6 y denotes the phase of y) and

r̂x(m) =

N�mX
k=�N

x�(k):x(k +m) (5)

is an unbiased estimate of rx(m). b! is obtained by

linear regression of the phase �̂(m). In (4), M is a
user's variable whose choice will be discussed later.

3. ANALYSIS

In this section, we derive the theoretical variance of
the estimate (4) under the assumption of small er-

rors in �̂(m), that is we consider small deviations from
what is called the equilibrium state[5]. The equilib-
rium state is related to the state of model parame-
ters in the noise free case. It should be observed that
the high SNR assumption is not actually required in
the present analysis. The equilibrium state is de�ned

by �(m) = 6 rx(m). Let ~rx(m) = r̂x(m) � rx(m),
~�(m) = �̂(m)��(m)and ~! = !̂�!d denote the estima-
tion errors, assumed to be small in the sequel. With
C = 6

M(M+1)(2M+1)
, the mean of the frequency esti-

mate is readily obtained as

E f!̂g = C:

MX
m=1

m:E
n
�̂(m)

o
= C:

MX
m=1

m:6 rx(m)

= C:

MX
m=1

m6 rs(m) = C:

MX
m=1

m2!d = !d (6)

where we used the fact that (m) is real-valued and
6 rx(m) = 6 rs(m) for m > 0. We now turn to the
variance of !̂. One has

~�(m) = �̂(m) � �(m)

= =
�
log

�
r̂x(m)

rx(m)

��

= =
�
log

�
1 +

~rx(m)

rx(m)

��

' =
�
~rx(m)

rx(m)

�
(7)

where the symbol ' is used to denote an approxima-
tion in which the neglected terms tend to zero at a
faster rate than the retained ones. With �(k;m) =
1

A
e2�

2f2
d
(m2�k2):e�j(k+m)!d ,

�(k;m) = 1

A�
e�2�

2f2
d
k(2m+k):ejk!d and

�(m) = 1

jAj2
e2�

2f2
d
m2

:e�jm!d , it can be shown that

~�(m) =
1

(m)

N�mX
k=�N

=f�(k;m):w(k +m)

+ �(k;m):w�(k) + �(m):w�(k):w(k +m)g

:=
1

(m)

N�mX
k=�N

=ff(k;m)g (8)

Therefore,

var f!̂g = C2:

MX
m;n=1

mn:E
n
~�(m):~�(n)

o

= C2

MX
m;n=1

mn

(m):(n)
�

N�mX
k=�N

N�nX
p=�N

E f= [f(k;m)]= [f(p; n)]g(9)

After some calculations, the theoretical variance of
the frequency estimate can be obtained as

var(!̂) = T1 + T2 + T3 + T4 (10)



where

T1 = �C
2:�2w

jAj2
MX

m;n=1

mn:(m + n)

(m):(n)
e�4�

2f2
d
:nm (11)

T2 =
C2:�2w

2 jAj2
MX

m;n=1

mn

(m):(n)
�

N�mX
k=max(�N;�N+m�n)

e�4�
2f2
d
:(k�n)(k+m)

(12)

T3 =
C2:�2w

2 jAj2
MX

m;n=1

mn

(m):(n)
�

min(N�n;N�m)X
k=�N

e�4�
2f2
d
:k:(k+n+m) (13)

T4 =
C2�4w

2 jAj4
MX
m=1

(2N + 1�m)m2

2(m)
e4�

2f2
d
m2

(14)

Expressions (11)-(14) enable to compute the theoretical
variance of !̂ for any given value of N;M; SNR;�; fd.
It is to be observed that, although the phase of the cor-
relation does not actually depend on the time-varying
amplitude, this latter has obviously an inuence on the
variance of the frequency estimate. Additionally, we
note that the variance is the sum of four terms: the
three �rst (T1+T2+T3) depend on SNR�1 = �2w= jAj2
whereas T4 is proportional to SNR�2.

4. NUMERICAL EXAMPLES

4.1. Simulated data

The aim of this section is twofold. Firstly, we check
the validity of the theoretical analysis by comparing
the theoretical variance, as given by (10), to empir-
ical variances obtained through Monte-Carlo simula-
tions. Secondly, we compare the variance of the fre-
quency estimator to the Cram�er-Rao Bounds. Addi-
tionally, the simulations presented here illustrate the
inuence of various parameters onto the estimator per-
formance. They enable to derive "optimal" values for
N and M . Unless otherwise speci�ed, the value of �
is selected as � = 0:122857 and A = ej' (where ' is
uniformly distributed on [0; 2�[) thorough the simula-
tions. The Signal to Noise Ratio (SNR) is de�ned as

SNR = jAj2

�2
w

: For each simulation, 500 Monte-Carlo

trials are run to estimate the variance of the estima-
tor. We begin with studying the inuence of N . Figure
1 compares the theoretical and empirical variances of
the estimator with the CRB for varying N .
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Figure 1: CRB, theoretical and empirical variances of
the frequency estimator versus N . fd = 0:05. SNR =
10dB. M = 15.

First, it can be seen that the theoretical and empir-
ical results are in very good agreement. Additionally,
the frequency estimator proposed herein is seen to come
close to the Cram�er-Rao bound, if N is not too large.
It should be noted that, for N above a threshold (typ-
ically N > 1:5=�fd), the frequency estimator proposed
here shows an increase in the error variance. Observe
that a good rule of thumb is to process as many sam-
ples as are recorded during the crossing of a particle
through the entire probe volume. Next, we study in
Figure 2 the inuence of the parameterM , the number
of correlation lags used in the linear regression.

We note that the variance of the frequency estimate

decreases with increasing M and reaches the CRB.
Moreover, for M above a threshold (i.e. M > N=3)
the variance does not decrease. The previous �gures
suggest that there exists some "optimal" choice of the
couple (N;M ) for which the errors achieve their lower
bound, which is shown to be the CRB. Many other nu-
merical simulations (not reported here) lend support to
the fact that an "optimal" choice is given by

Nopt ' 3

2�fd
=

3

2

W

V

Mopt ' Nopt

3
=

1

2�fd
=

W

2V
(15)
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Figure 2: CRB, theoretical and empirical variances of
the frequency estimator versus M . fd = 0:05. SNR =
10dB. N = 200.

The choice in (15) provides a simple way of selecting
both the time window and the number of correlation
lags used in the regression algorithm. With this choice,
the estimator proposed herein attains the CRB over a
wide range of scenarios. Figure 3 illustrates this claim
by plotting the variance of the proposed estimator as a
function of fd when N and M are chosen as in (15).

4.2. Application to real data

We now illustrate the e�ectiveness of the estimator
proposed here on real data recorded in a wind tun-
nel. Particles of air were injected with a known ve-
locity. The signal received by the photodetector was
recorded and stored for post-treatment. The estima-
tor was applied to the data with the selection rule
for Nand M given by (15). Four cases are presented
here, which correspond to di�erent particles's speeds
ranging from 100ms�1(case #1) to 65ms�1(case #4).
For comparison purposes, the MLE was applied to the
same set of data. From the MLE, consistent estimates
of the CRB were computed in order to check if the
frequency estimate proposed here belongs to the inter-

val
h
fMLE �

p
CRB; fMLE +

p
CRB

i
. Table 1 lists

the values of the frequency estimates obtained by the
phase-based method and MLE.

Case# 1 2 3 4

fMLE 4:127348E� 2 4:01222E� 2 3:245991E � 2 2:773188E� 2

fPHASE 4:12981E� 2 4:012169E� 2 3:246473E � 2 2:771189E� 2
fPHASE�fMLEp

CRB
0:703 �0:018 0:372 �0:855

Table 1: Values of the frequency estimate obtained from the phase-estimator and MLE
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Figure 3: CRB, theoretical and empirical variances of
the frequency estimator versus fd. N = 3
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.

SNR = 10dB.

As can be seen, the estimator proposed here pro-
vides a frequency close to that obtained by the MLE,
i.e. within the �

p
CRBinterval.
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