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ABSTRACT
This paper considers the performance of four channel
identi�cation techniques for code division multiple access
(CDMA) antenna array receivers. These techniques are
based on the assumption that the interference is spatially
white: they provide a spatial \matched �lter" solution. Per-
turbation formulae are presented for estimating the attain-
able signal to interference and noise ratios (SINR) for these
techniques. Some simulation results are also presented to
compare the convergence performance of these methods.

1. INTRODUCTION
Cellular mobile communications may achieve higher cell ca-
pacities through the use of CDMA techniques, one example
being the US IS{95 standard [1]. All users on the mobile{
to{base station (reverse) link operate asynchronously on
the same RF bandwidth, so that system capacity is even-
tually limited by multiple access interference (MAI). One
promising method to suppress MAI and improve capacity
is to employ an antenna array receiver at the base station
[2]. An important aspect for antenna arrays is the choice
of algorithm to operate the receiver. This paper considers
the performance of a number of matched �lter algorithms,
which operate on the assumption of spatially white MAI.
The structure of this paper is as follows. In section 2,

the channel model used for this paper is described; section
3 then introduces the algorithms and provides theoretical
estimates of the SINR performance. Section 4 presents and
discusses simulation results for algorithms' performance: �-
nally, conclusions to the paper are given in section 5.

2. THE CDMA CHANNEL MODEL
A single cell direct sequence spread spectrum system em-
ploying binary phase shift keying will be considered here.
There are P users: the pth mobile will generate a binary
data sequence dp(t), with each symbol having a period of
time Ts seconds. This is multiplied by the user's PN code
cp(t), which is a sequence of \chips", each of period Tc. The
processing gain of the code is L = Ts=Tc: each chip of the
code is an independent, identically distributed (iid) binary
(�1) random variable with zero mean. The resulting signal
is transmitted in the correct RF channel.
Assuming a frequency non{selective, plane wave chan-

nel model, the M � 1 received baseband vector for an M{
element antenna array is:

r(t) =

PX
p=1

�pdp(t� tp)cp(t� tp) expfj�pga(�p)+ z (t) (1)

The scalars f�p; �p; tpg represents the received amplitude,
phase and time delay for the pth user and the M � 1 vector
a(�p) represents the array steering vector for the pth user's
bearing �p. The array is a uniform linear array with antenna
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spacing of 1=2 the RF carrier wavelength, so that the mth
entry of a(�) is expfj(m � 1)� sin �g. The M � 1 vector
z (t) represents additive noise.
Consider the antenna array receiver which is matched in

time to user p = 1. Initially, r(t) is passed through a �lter
matched to the pulse shaping of c1(t), which in this paper
is assumed to be rectangular. The output is sampled at the
chip rate, so that the M � 1 vector x (l;n) for the lth chip
sample of the nth symbol for user 1 may be written as:

x (l; n) =

PX
p=1

�p�p(l; n) expfj�pga(�p) + z1(l; n) (2)

The scalar �p(l; n) denotes the pulse shape �lter output for
the pth user's data modulated PN code dp(t� tp)cp(t� tp).
For p = 1, �1(l; n) = c1(l; n)d(n), where c1(l; n) denotes the
lth code chip transmitted for the �rst user's nth symbol
d(n). Finally the M � 1 vector z1(l; n) denotes zero{mean
temporally and spatially white Gaussian noise of power �2.
In order pick out the desired user's signal, a digital

matched �lter containing the PN code c1 is applied to x . If
c1 is delayed by l1 chips compared to the signal x (l; n), the
symbol rate PN code �lter output y(n; l1) is given by:

y(n; l1) =

PX
p=1

�p p(n; l1) expfj�pga(�p) + n(n; l1) (3)

where the M � 1 vector n(n; l1) is the �lter output for the
input noise sequence fz1(l; n)g only. The scalar  p(n; l1) is
�lter output for the scalar input sequence f�p(l; n)g.
The statistical properties of  p(n; l1) and f�p(l; n)g are of

use in later sections, so the following points are noted here.
From the de�nition of cp(t), it follows that E[�p(l; n)] = 0
and E[�p(l; n)

2] is the same for all chip positions l. The
notation E[] is the time expectation operator. The sequence

 p(n; l1) is then zero mean and has variance LE[�p(l; n)
2],

unless p = 1 and l1 = 0 whereupon it is L2E[�p(l; n)
2]. The

central limit theorem (CLT) may be invoked here to show
that the asymptotic distribution (as L!1) of  p(n; l1) is
Gaussian when l1 6= 0. Furthermore,  p(n1; l1) is uncorrel-
ated with  p(n2; l2), when n1 6= n2 or if the relative delay
of l1 and l2 is two chips or more (and n1 = n2).

2.1. Signal Characterisation

The necessary assumptions for the parameters described
above will now be made. Relative to the time delay t1
for user 1, all other time delays ftp; p 6= 1g are uniformly
distributed over the interval [0; Ts]. The phase terms f�pg
are assumed to be uniformly distributed over [0; 2�] and
the amplitude coe�cients f�pg have all been set equal to 1
(perfect power control). No Doppler e�ects are considered,
so that each realisation of the channel is stationary. A single
120o coverage cell sector is considered, with the bearing of
user 1 set to �1 = 0o (array broadside). The bearings of all
other users are uniformly distributed over [�60o; 60o].



One common method for characterising the received sig-
nal y(n; l1) is to estimate its M � M covariance matrix

R̂y(l1) from K consecutive snapshots of data:

R̂y(l1) =
1

K

KX
k=1

y(nk; l1)y(nk; l1)
H

(4)

where yH denotes the Hermitian transpose operator and nk
denotes the kth symbol for averaging. For a given realisa-
tion of the simulation parameters f�p; tp; �pg, the mean of

R̂y(l1) for l1 6= 0, denoted as Ry(l1)
z, may obtained from

eqn (3) as:

Ry(l1)=

PX
p=1

�
2

pE[ p(n; l1)
2]a(�p)a

H(�p)+L�
2
I=LS+Q (5)

where the signal matrix S = �21a(�1)a
H(�1), I denotes the

identity matrix and Q denotes the total interference and
noise covariance.
As the distribution of  p(n; l1) is approximately Gaus-

sian for large L, the distribution of R̂y(l1) (for l1 6= 0) may
be approximated by the complex Wishart distribution [3].
Also the vectors y(nk; l1) are iid, so the errors in the es-

timate of Ry(l1), denoted as �Ry(l1) = R̂y(l1) � Ry(l1),
are asymptotically (as K !1) Gaussian distributed, with
zero mean and variance [4]:

E[xH1 �Ry(l1)x2x
H
3 �Ry(l1)x4] =

xH1 Ry(l1)x4x
H
3 Ry(l1)x2

K
(6)

where x1 � x4 are arbitrary M � 1 complex vectors.
For the algorithms in this paper, the most commonly used

form of Ry is for the delay l1 = 0, where it is given by

L2S + Q . The moments of R̂y(0) are slightly di�erent,
because the desired signal has a constant amplitude of L�1
and is no longer approximately Gaussian. In this case, the

distribution of the error term �Ry(0) = R̂y(0) � Ry(0)
may be approximated by the non{central complex Wishart
distribution [3]. The mean of the error is again zero and its
asymptotic variance is:

E[xH1 �Ry(0)x2x
H
3 �Ry(0)x4] =

xH1 Ry(0)x4x
H
3 Ry(0)x2

K

�
L4xH1 Sx4x

H
3 Sx2

K
(7)

For a �xed value of l, it is possible to de�ne the mean co-

variance matrix Rx(l) of the pre{correlation vector x (l;n):

Rx(l)=

PX
p=1

�
2

pE[�p(l; n)
2]a(�p)a

H(�p) + �
2
I =S+

1

L
Q (8)

Again Rx(l) may estimated from K snapshots by replacing
y(nk; l1) with x (l; nk) in eqn (4). For large P , the MAI
present in x (l;nk) will be approximately Gaussian distrib-
uted. As the vectors x (l; nk) are iid, the CLT indicates that

the error matrix �Rx(l) = R̂x(l)�Rx(l) is asymptotically

Gaussian distributed as K !1. The mean of �Rx(l) is 0
and its variance is:

E[xH1 �Rx(l)x2x
H
3 �Rx(l)x4] =

xH1 Rx(l)x4x
H
3 Rx(l)x2

K

�
xH1 Sx4x

H
3 Sx2

K
(9)

The second term on the RHS of eqn (9) again occurs due
to the constant amplitude of the signal term in x (l; nk).

zThe overbar notation for Ry denotes the fact that the
matrices are a function of the P users' signal parameters.

3. ALGORITHM PERFORMANCE
The performance metric used in this paper is the mean out-
put SINR after the spatial �lter ŵ, chosen by the algorithm
using K snapshots of data, has been applied to the signal
vector y(0; n). This may be de�ned as:

SINR = E

�
L2ŵHSŵ

ŵHQŵ

�
(10)

In the following analysis, it is assumed that the matrices
S and Q are �xed over the expectation operation. The
vector ŵ is a function of the received data and is assumed
to be of the form w +�w . The vector w denotes the mean
spatial �lter (i.e. K ! 1) obtained for each algorithm
and the term �w denotes an error term due to �nite data
averaging. Eqn (10) may then be written as:

SINR = L
2E
h
a+ b

c+ d

i
= L

2

�
a+ E[b]

c
�
aE[d] + E[bd]

c2
+
aE[d2]

c3
+ : : :

�
(11)

The RHS of eqn (11) represents the Taylor series expansion
of the denominator term. The terms a, b, c and d may be
de�ned as:
a = w

H
Sw ; b = �wH

Sw +w
H
S�w +�wH

S�w

c = w
H
Qw ; d = �wH

Qw+wH
Q�w+�wH

Q�w (12)

The terms E[b], E[d], E[bd] and E[d2] are evaluated below,
retaining only those terms that involve the �rst and second
order moments of �w .

E[b] =

MX
j=1

MX
k=1

SjkE[�w�wH]kj + 2<fwH
SE[�w ]g

E[d] =

MX
j=1

MX
k=1

[Q]jkE[�w�wH]kj + 2<fwH
QE[�w ]g

E[bd] =

MX
j=1

MX
k=1

(2<f[SwwH
Q]jkE[�w�wH ]kj

+[S�

w
�

w
H
Q ]jkE[�w�wT ]kjg)

E[d2] =

MX
j=1

MX
k=1

2<([QwwH
Q]jkE[�w�wH]kj

+ [Q
�

w
�

w
H
Q]jkE[�w�wT ]kj) (13)

The notation < indicates the real part of a complex value;
[Q]jk denotes the jth row and kth column entry of the

matrix Q. The perturbation formulae will be most accurate
when the error terms E[b] and E[d] are small. As a result,
the terms E[bd] and E[d2] are likely to be smaller still: it is
possible to neglect the latter two terms and still retain an
adequate approximation. The value of eqn (11) will now be
considered for each algorithm in turn.

3.1. Algorithm Description

This subsection will describe a number of algorithms to se-
lect the spatial �lter ŵ :
1. Eigen�lter Method: This technique is based on the
statistical principal components analysis method [5]. An

eigenvalue decomposition of R̂y(0) is performed to obtain
a set of M eigenvalues and associated eigenvectors. The ei-
genvector û1 for the largest eigenvalue is assumed to provide
a good estimate of the desired signal vector a(�1) and is
chosen as ŵ . After beamforming, d(n) may be estimated
using DPSK demodulation [6].
The moments of the beamformer error �w have been

obtained using the asymptotic approximations in Appendix
A of [4]. In the results below, the eigenvector and eigenvalue

pairs fuj ; �jg are those for the matrix Ry(0). If the MAI is



spatially coloured, u1 may not be an unbiased estimator of
a(�1). Hence, the other eigenvectors u2 � uM may not be

orthogonal to a(�1): the product Fjk = L2uHj Suk is thus
di�cult to simplify. Then:

E[�w ] =
1

K

MX
j=2

�
�
(�j�1 � FjjF11)

2(�1 � �j)2
u1

�

 
Fj1F11

(�1 � �j)2
�

MX
k=2

Fj1Fkk

(�j � �1)(�k � �1)

!
uj

#

E[�w�wT ] = �
1

K

MX
j=2

MX
k=2

Fj1Fk1uju
T
k

(�1 � �k)(�1 � �j)

E[�w�wH] =
1

K

MX
j=2

MX
k=2

(�1�j�jk � F11Fjk)uju
H
k

(�1 � �j)(�1 � �k)
(14)

where �jk is the Dirac delta function.
2. Stanford Method (a): This algorithm [7, 8] is a mod-
i�ed version of the eigen�lter method; the steering vector is
obtained as the M � 1 eigenvector û1 for the largest eigen-

value of the matrix X̂a = 1

L
(R̂y(0) � R̂y(l1)). Again, the

�lter output may be demodulated using DPSK techniques.
In this paper, all simulations have used l1 = 10 chips.
The asymptotic formulae of [4] have again been used to

estimate the moments of �w . The time expectation of

X̂a is proportional to the signal matrix S : its eigenvector
u1 is simply the steering vector a(�1) and corresponds to
the non{zero eigenvalue �1 (equal to (L � 1)M from eqn
(5)�). The other M � 1 eigenvectors u2 � uM , which all
have zero eigenvalues, are orthogonal to S . This means

that any term of the form ujRy(l)uk (for any l) may be

simpli�ed to ujQuk, if j or k is larger than 1. Thus:

E[�w ]=
2

KL2�2
1

MX
j=2

" 
Cj1D11

2
�

MX
k=2

Cj1Ckk

!
uj�

CjjD11

4
u1

#

E[�w�wT ] =
1

KL2�2
1

MX
j=2

MX
k=2

2Cj1Ck1uju
T
k

E[�w�wH] =
1

KL2�2
1

MX
j=2

MX
k=2

CjkD11uju
H
k (15)

The terms Cjk and Djk are de�ned as:

Cjk = u
H
j Quk Djk = u

H
j (Ry(0) +Ry(l1))uk (16)

3. Stanford Method (b): An alternative estimate for
the spatial �lter is the the eigenvector û1 for the largest

eigenvalue of the matrix X̂b = ( 1
L
R̂y(0))� R̂x(L) [9]. The

matrices 1

L
Ry(l1) and Rx(L) have slightly di�erent statist-

ical properties (c.f. eqns (6) and (9)), but it turns out (by

substituting LRx for Ry(l1) above) that the moments for
�w in eqn (15) are the same for both algorithms.
4. Maximal Ratio Combining (MRC): The �nal ap-
proach is based on a form of maximal ratio combining [7].
The spatial �lter is the M � 1 cross{correlation vector r̂ ,
de�ned as:

r̂ =
1

K

KX
k=1

y(nk; 0)d̂(nk) (17)

In this paper, it will be assumed that the symbol sequence

estimate d̂(n) is always correct. The vector r̂ provides
an estimate of the carrier, so that it performs coherent
data demodulation. Thus, the current symbol may be es-
timated directly from the beamformer output, unlike the

other methods. For a bit error ratio (BER) of 10�3,
perfectly{coherent PSK requires 1{1.5 dB less SINR than
for DPSK[6]. As with the Stanford methods, it is asymp-
totically unbiased. The moments of the error term are:

E[�r ] = 0; E[�r�r
T
] = 0; E[�r�r

H
] =

Q

K
(18)

It is of interest to compare the asymptotic moments ob-
tained for the eigen�lter and Stanford methods. A simple
case will be considered here, with no MAI (P = 1). In this
case, the mean eigenvector for all three techniques would
be the same, i.e. u1 = a(�1) (except for a complex scal-
ing factor). The other M � 1 eigenvectors are not uniquely

de�ned, but will span the same subspace I � u1u
H
1 .

The asymptotic mean and covariance terms for the error
�u1 in the eigen�lter method become:

E[�u1] =
�(M � 1)(LM + �2)�2

2K(LM)2
u1

E[�u1�u
H
1 ] =

(LM + �2)�2

K(LM)2
(I � u1u

H
1 ) (19)

Both results are the same for the Stanford methods, but are
multiplied by L2((L+1)M+2�2)=((L�1)2(LM+�2)). This
indicates that both methods are asymptotically unbiased
as E[�u1] / u1. However, the eigen�lter method can be
a biased estimator when the MAI is spatially coloured {
both Stanford methods are always asymptotically unbiased
as K ! 1. On the other hand, the eigen�lter method
provides lower variance estimates of the steering vector than
the Stanford methods in this case, particularly when the
output SINR is low (i.e. �2 is large).

4. SIMULATION WORK AND RESULTS
The �rst simulation to be performed considered the SINR
performance of all the algorithms, operating with white
Gaussian noise only. The array size is M = 8 antennas
and the noise power �2 is set so that the matched �lter
bound (MFB) { with ŵ = a(�1) { for the desired user is
0, 5 or 10 dB. The processing gain of CDMA system was
L = 64, with all PN sequences obtained using the gener-
ator polynomial h(x) = x64+x4+x3+1. The SINR of the
desired user for each of the algorithms at the output of the
spatial �lter has been calculated. These values have been
averaged over 1000 Monte Carlo simulations: the results are
plotted against number of snapshots K in �gure 1. Simu-
lation results are shown for all four algorithms as points:
theoretical curves for MRC, eigen�lter and both Stanford
methods are shown as lines. Comparing the curves in �gure
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Figure 1. Theoretical/simulated SINR performance of the
four algorithms, plotted against No of snapshots K. MFB
SINRs are 0, 5 and 10 dB.

1, there is little to choose between the matched �lter meth-
ods at reasonable SINRs. The 0 dB results show the Stan-
ford methods have slightly worse SINR results than for the
eigen�lter method { this is attributable to the larger vari-
ance term in eqn (19)� for the Stanford methods. Perfect



knowledge of the data sequence d(n) is probably the reason
for the improved performance of the MRC method over the
others here. The fact that an algorithm's convergence time
is large at low SINRs, such as 0 dB, is probably not signi-
�cant as the receiver BER will be poor anyway. The theory
curves provide a good approximation to the SINR perform-
ance for reasonable values of K. However, the curves tend
to diverge as K reduces and the error terms become larger {
higher order terms in the Taylor expansion will then become
non{negligible. That the Stanford theory curve provides a
slightly poorer �t than the others is probably again attrib-
utable to the larger variance of the beamformer error �w .
The next simulation considered the SINR performance of

all the algorithms, operating in a cell sector with P = 100
mobiles. The SINR of the desired user for each of the al-
gorithms at the output of the spatial �lter has been cal-
culated from 1000 Monte Carlo simulations, each with the
same random positioning of the mobiles. The MFB SINR,
ignoring MAI, has been set to 10 dB: otherwise, simula-
tion conditions are the same as for �gure 1. The results
are plotted against number of snapshots K in �gure 2, with
simulation results shown as points and theoretical curves
are shown as lines.
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Figure 2. The Output SINR plotted against No of snapshots
K for a sector with P = 100 users.

The results show similar characteristics to those for �g-
ure 1. The eigen{decomposition methods all provide similar
performance in this case, with MRC providing a slightly
higher output SINR. As K ! 1, there is a small bias
present in the eigen�lter beamformer estimate, as the MAI
is not spatially white. The maximum achievable SINR for
the eigen�lter method is 6.93 dB, while for the other tech-
niques it is 6.95 dB (shown as a horizontal line).
When the array size is doubled, it would be hoped that

the SINR of the received signal at each antenna could be
halved. It is important to assess how well the algorithms
cope in this situation. The �nal simulation has been con-
ducted with a single desired CDMA user and antenna sizes
M of 2, 4, 8 and 16 elements. In all cases, the MFB SINR
was maintained at 7 dB. Otherwise, simulation conditions
are the same as for �gure 1. The results in �gure 3 show that
for the eigen�lter method, the convergence times to achieve
a given combiner loss at least double as the antenna size
doubles. This is because the noise power at each antenna is
also doubled each time. Similar trends have been observed
in the performance of all the other algorithms.
The BER performance of the MRC method is di�cult to

compare with that of the eigen{decomposition algorithms,
because di�erent demodulation schemes are used. The
MRC should perform slightly better than the other tech-
niques because it uses coherent demodulation. However, if
incorrect decisions are used in eqn (17), error propagation
e�ects may occur. To mitigate these problems, periodic
training symbols may be transmitted by the mobile.
Comparing the eigen{decomposition techniques, all three

algorithms o�er reasonably similar performance. The eigen-
�lter method has a lower asymptotic variance error term

in eqn (19) than the Stanford methods; however, the lat-
ter are always asymptotically unbiased estimators, unlike
the eigen�lter method. The Stanford methods will thus
perform better when the MAI is signi�cantly spatially col-
oured. However, in this case, a method that maximises the
SINR of the receiver [8, 9] is likely to perform better still.
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Figure 3. The eigen�lter method output SINR plotted
against No of snapshots, for di�erent antenna sizes M .
There is one CDMA user and the MFB SINR is 7 dB.

In many cellular environments, the radio channel will be
frequency selective with more than one resolvable chan-
nel tap. The receiver can apply the above algorithms to
each tap and then combine the beamformer outputs with
a RAKE �lter: the so{called 2D-RAKE �lter. The results
from �gure 1 show that for a �xed value of K the larger
the matched �lter bound SINR, the smaller the combining
loss. If the total signal power is �xed, the receiver will have
better performance for a channel where it is split equally
between a small number of taps than where it is spread
over a large number of taps.

5. CONCLUSIONS
In this paper, some asymptotic results have been presented
for the performance of spatially matched �lter algorithms
for antenna array receivers, operating on the reverse link
of CDMA cellular systems. Simulation results have been
presented to compare with the theoretical results; these
demonstrate that all the matched �lter algorithms provide
similar SINR performance.
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