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ABSTRACT

In wireless communication scenarios, local scatterers in the
vicinity of the mobile sources cause angular spreading. As a
result, the spatial signatures will not belong to the conven-
tional array manifold parameterized by direction of arrival
(DOA) alone. In this paper, a parameterized model for
spatial signatures applicable in scenarios with local scatter-
ing is presented. Several algorithms that exploit this model
are proposed, and the performance of signal waveform esti-
mators using the model is investigated via simulations. It
is demonstrated that considerable gain may result as com-
pared with using the conventional plane wave model.

1. INTRODUCTION

The use of antenna arrays as a tool for improving coverage,
reducing interference, and increasing capacity in wireless
communications systems has recently attracted signi�cant
interest [6]. For the uplink (remote to base) portion of
the system, signals can be separated at the array based on
knowledge of their spatial or temporal \signatures". The
array can also be used on the downlink (base to remote)
channel to transmit energy towards one user and not at
another. Such systems can reduce radiated power require-
ments, allow for multiple mobile co-channel users, and re-
duce signal contamination from adjacent cells.

In this work, scenarios with multipath propagation con-
�ned to local scatterers in the vicinity of the mobile sources
are considered. Fast fading is usually attributed to lo-
cal scattering, and local scattering models have been used
to derive channel models including the spatial dimension
[6, 9, 15]. By assuming a spatial distribution for the multi-
path components, it is possible to derive the fading corre-
lation between the elements of an array. In many cellular
radio systems, the base station antenna(s) are mounted on
a tower away from potential multipath reectors. If the
scatterers are local to the mobile and the base station is
some distance away, the scattered signals from a given user
will be coherent and con�ned to a relatively small angular
region.

Traditional direction of arrival (DOA) estimation tech-
niques rely on the fact that the spatial signature, or channel,
is a known function of the DOA. Due to multipath prop-
agation, the spatial signature will not belong to the array
manifold parameterized by DOA alone. However, under
the assumption of local scattering, use of the DOA will still
make sense for determining spatial signatures.

In [13, 15], a statistical model is proposed under which
the spatial signature is approximately Gaussian with zero
mean and covariance matrix parameterized by the nomi-
nal direction and angular spread of the scatterers. In this
paper, a deterministic approach is taken using a general-

ized array manifold consisting of a linear combination of
the nominal steering vector and its gradient. Instead of es-
timating the parameters of the distribution from multiple
realizations of the spatial signatures as in [13], the coe�-
cient of the gradient vector is estimated along with each
user's DOA for each realization. Also, in contrast to [13],
the estimation of the extra parameter is linear, leading to
a computationally simpler solution.

The use of array manifold derivatives has been stud-
ied as a way of making minimum variance beamformers
more robust by widening their main beam response [1, 3,
14]. Compared with these methods and the stochastic ap-
proaches in [13, 15], the technique described here seeks to
identify the actual spatial signatures of each user. The pa-
per aims at presenting algorithms for parameterized estima-
tion of spatial signatures in scenarios with local scatterers,
and the focus is on uplink signal waveform estimation.

2. GENERALIZED ARRAY MANIFOLD

MODEL

It is assumed that d mobile sources are present emitting
narrowband signals. The scenario is assumed to be time
invariant, and the time dispersion introduced by the mul-
tipath propagation is assumed to be small in comparison
with the reciprocal of the bandwidth of the emitted signals.
Thus, for an array of m antennas, the following low rank
model results:

x(t) = Vs(t) + n(t) 2 CI
m
: (1)

The ith column of V, denoted vi, represents the spatial
signature of the signal si(t) transmitted by user i. The

vector s(t) = [s1(t); � � � ; sd(t)]
T contains the signals of all

users at time t, and n(t) denotes additive noise. The term
low rank here refers to the fact that it is assumed that d <
m. The spatial signature vi may be written as

vi =

N
iX

k=1

�ika(�i + ~�ik) ; (2)

where �ki is the (complex) amplitude of the kth scattered
signal, a(�) is the response of the array to a single unit



amplitude signal with DOA �, and Ni is the total number
of local scatterers for the ith source. The quantities �i and
�i + ~�ik represent respectively the nominal DOA of the ith
user, and the arrival angle of the kth scattered signal. The
phenomenon is illustrated in Figure 1. The assumption of

Mobile i
2�i

�i

Base Station
Array

Figure 1: Local scattering

local scattering near each user means that �i in Figure 1 is
small. De�ne the gradient d(�) = @a(�)=@�, so that a �rst
order Taylor series expansion of (2) yields

vi '

N
iX

k=1

�ik

h
a(�i) + ~�ikd(�i)

i

=

 
N
iX

k=1

�ik

!
a(�i) +

 
N
iX

k=1

�ik ~�ik

!
d(�i)

= a(�i) + �id(�i) ; (3)

where it is assumed that the spatial signature is scaled so
that

P
k
�ik = 1, and �i is de�ned as �i =

PN
i

k=1 �ik
~�ik.

Substituting (3) into V leads to the following compact ma-
trix notation:

V ' A(�;�) = A(�) +D(�)�(�) (4)

where

A(�) = [a(�1); � � � ; a(�d)]; D(�) = [d(�1); � � � ;d(�d)];

�(�) = diag f�1; : : : ; �dg ;

� = [�1; � � � ; �d]
T and � = [�1; � � � ; �d]

T . Both a(�) and its
gradient d(�) are assumed to be known (calibrated) func-
tions of �, and the problem addressed in this paper is the
estimation of � and � given N observations of the array
output.

Under the assumption that the derived model is valid,
a natural question is under what conditions the parameters
are identi�able. For the methods considered here, it is as-
sumed that the parameters are uniquely determined by the
column span of A(�;�). This holds if an m�(d+1) matrix
A(�;�) has full rank for any collection of distinct param-
eters �1; : : : ; �d+1 and arbitrary �1; : : : ; �d+1. As in [12],
necessary conditions may be derived. If the m � 2(d + 1)
matrix [A(�) D(�)] has full rank for all � 2 IRd+1 with dis-
tinct elements, then, except for a set of zero measure, the
parameters are identi�able if d � m� 2.

3. PARAMETERIZED ESTIMATE OF SPATIAL

SIGNATURE

In this section, two algorithms for estimating � and � are
proposed that take advantage of the special structure of
the spatial signatures in (4), which we refer to as a gen-

eralized array manifold (GAM). The basic idea behind the
algorithms comes from similar GAMs that arise in situa-
tions involving diversely polarized antenna arrays [5, 10, 12].
The key advantage is that a search is required only for
the DOA parameters; the gradient coe�cients are separable
and solved for explicitly given the resulting DOA estimates.

The algorithms use the orthogonality between the noise
subspace and the signal subspace. The eigenvectors asso-
ciated with the m � d smallest eigenvalues of the sample
covariance matrix of the N observations are used as an
estimated basis of the noise subspace. The collection of
estimated noise subspace eigenvectors is denoted Ên.

3.1. A MUSIC-Based Approach

In the standard MUSIC algorithm [10], the DOAs are es-
timated by searching one by one for values of � that make
a(�) nearly orthogonal to Ên. The measure of orthogonality
for MUSIC is de�ned to be

VMU(�) =
a�(�)ÊnÊ

�
na(�)

a�(�)a(�)
;

and the d minima of VMU(�) are taken to be the estimates
of the DOAs. With a GAM, a(�) must be replaced with

a(�) + �d(�) = �A(�)��

where �A(�) = [a(�) d(�)] and �� =
�
1 �

�T
. For this

case the MUSIC cost function becomes

VMU(�; �) =
��
� �A�(�)ÊnÊ

�
n
�A(�)��

��
� �A�(�) �A(�)��

:

The MUSIC criterion is seen to be a ratio of quadratic forms
in ��, and thus minimizing VMU(�; ��) with respect to �� is
equivalent to �nding, as a function of �, the following min-
imum generalized eigenvalue and eigenvector:

�A
�
(�)ÊnÊ

�
n
�A(�)zmin = �min �A

�
(�) �A(�)zmin :

As proposed in [10], the DOA estimates can then be found
by viewing �min as a function of �, and searching for its
minima. The gradient coe�cient � can be determined from
the eigenvector associated with �min(�̂i).

3.2. Noise Subspace Fitting

As an alternative, consider the noise subspace �tting (NSF)
approach outlined in [4, 11]. Under the GAM model, the
NSF algorithm estimates � and � as the minimizing argu-
ments of the following cost function:

VNSF(�;�) = Tr
�
A
�
(�;�)ÊnÊ

�
nA(�;�)W

�
;



where W = W� > 0 is a d � d weighting matrix. Using
arguments similar to those in [12], the cost function may be
written asn

�̂; �̂
o
= argmin

�;�

h
e
T
�
�
i
M(�)

�
e

�

�
; (5)

where e is a column vector composed of d ones and

M(�) =

�
Maa Mad

Mda Mdd

�

=

�
(A�ÊnÊ

�
nA)�WT (A�ÊnÊ

�
nD)�WT

(D�ÊnÊ
�
nA)�WT (D�ÊnÊ

�
nD)�WT

�
:

Here, � denotes the element-by-element product. The cost
function in (5) may be rewritten as

VNSF =
�
�+M

�1
ddMdae

��
Mdd

�
�+M

�1
ddMdae

�
+e

T
�
Maa �MadM

�1
ddMda

�
e :

From this it follows that the estimation of � is separable
from that of the DOAs, and is given by

�̂ = �M
�1
ddMdae : (6)

The concentrated cost function then becomes

VNSF(�) = e
T
�
Maa �MadM

�1
ddMda

�
e : (7)

Thus, VNSF(�) is the sum of the elements of the Schur com-
plement of M(�). The algorithm is implemented as follows

1. Estimate �̂ as the argument that minimizes the sum
of the elements of Maa �MadM

�1
ddMda :

2. Solve for �̂ by using �̂ in (6)

The GAM model follows from an approximation of (2). If
the model of (4) is valid, the weighting matrix W can be
chosen so that the above NSF method yields asymptotically
e�cient parameter estimates (i.e., the asymptotic variance
of the estimates attains the Cram�er-Rao bound). This fol-
lows directly from the results of [12]. The optimal W is
parameter dependent, so the NSF approach must be pre-
ceded by a step where � and � are estimated consistently
(e.g., using the MUSIC approach described earlier). It is
well known that this procedure has no e�ect on the asymp-
totic properties of the estimates.

For small angular spread, it may be reasonable to ne-
glect the scattering when estimating the DOAs. The esti-
mated DOAs may be used in (6) to solve for �̂. Simulations
indicate that such a decoupled approach performs well for
small angular spreads.

3.3. Uniform Linear Arrays

For a Uniform Linear Array (ULA) with elements separated
by 4 wavelengths, it is easily established that the gradient
is @a(�)=@� = j�4 cos(�)	ma(�), where 	m is a diagonal
matrix, 	m = diag f�(m� 1);�(m� 3); : : : ; (m� 1)g.

The factor j�4 cos �i is associated with �i, and ~d(�) =
	ma(�) is used instead of the true gradient d(�). In [2] it
was argued that for a ULA with small aperture and with

� small, the spatial signature is approximately a Vander-
monde vector,

a(�) + �d(�) � e
�jm�1

2
!
h
1; e

j!
; : : : ; e

j!(m�1)
iT

; (8)

where ! = 2�4(sin � + � cos �). Note that ! is complex
since � is. As outlined in [2], the ESPRIT algorithm [8] may
be used to estimate the complex frequency !, and hence
V. This may be viewed as an approximation of the GAM,
applicable to ULAs.

4. NUMERICAL EXAMPLES

In this section, the accuracy of the estimated spatial sig-
natures is evaluated by comparing their ability to perform
signal separation (e.g., via beamforming). The signal wave-
form estimator considered is the so called stochastic maxi-
mum likelihood estimator [7], which uses a structured esti-
mate of the array covariance. Given estimates of the spatial
signatures, V̂, the estimated signals are given by

ŝ(t) =W
�
x(t) =

��
V̂R̂ssV̂

�
+ �̂

2
I

��1
V̂R̂ss

��
x(t) ;

R̂ss = V̂
y
�
R̂� �̂

2
I

�
V̂
y�

�̂
2
=

1

m� d
Tr
n�
I� V̂V̂

y
�
R̂

o
:

Here V̂y = (V̂�V̂)�1V̂� and R̂ is the sample covariance
matrix. Another alternative is the Linearly Constrained
Minimum Variance (LCMV) beamformer [1, 3]. The weight
vector for estimating the ith signal si(t), wi, attempts to
minimize Ejw�

i x(t)j
2
= w�

iRwi subject to the linear con-
straints w�

iC = f�. If the nominal DOA is �i, it follows
from (3) that a reasonable set of constraints when angular
spread is present is w�

i a(�i) = 1 and w�
i d(�i) = 0. This

gives C = [a(�)d(�)] and f = [1; 0]T . The estimated signal
is then given by

ŝi(t) = w
�
i x(t) ; wi = R

�1
C
�
C
�
R
�1
C
��1

f : (9)

Note that this approach will use two degrees of freedom for
each source. In (9), R and �i are replaced with estimates.

In the simulations, a ULA with elements separated by
half a wavelength is used. In each trial, a spatial signature is
generated by drawing 30 local scatterers from a uniform an-
gular distribution of width 2�. In each trial 100 snapshots
are collected. The signals are estimated and the signal to
interference plus noise ratio (SINR) is averaged over 2000
trials. The standard ESPRIT algorithm was used for deter-
mining DOA estimates used by the LCMV beamformer, and
as initial estimates for MUSIC and NSF. The purpose of the
simulations is to compare the performance using di�erent
models and methods for determining V̂. In the plots, DOA
refers to ignoring the scattering and using V̂ = A(�̂) with �̂
estimated using the standard ESPRIT algorithm. MUSIC
and NSF use A(�̂; �̂) with �̂ and �̂ estimated with MU-
SIC and NSF respectively. VM refers to using the ESPRIT
algorithm to estimate Vandermonde vectors as outlined in
Section 3.3 and in [2].

In the �rst example two mobile sources with 20 dB and
40 dB SNR are present. The angular width of both sources



is 2� = 4� as seen from an array with six elements. In
Figure 2 the average SINR of the weaker signal is shown
for di�erent angular separations. In the second example a
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Figure 2: Di�erent angular separations, 2� = 4�.

ULA with eight elements is used and three well separated
mobile sources with nominal DOAs �30�, 0� and 30� and
SNR 40 dB, 20dB and 40dB are present. In Figure 3, the
average SINR of the weaker signal is shown for various an-
gular spreads. In both examples, the use of the GAM is
seen to provide a signi�cant improvement in SINR.
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Figure 3: Di�erent angular spreads.

5. CONCLUSIONS

A parameterized model, GAM, for spatial signatures in the
presence of local scattering was presented. Two algorithms
based on MUSIC and NSF were proposed for estimating the
parameters. Numerical comparisons were made with the
approach proposed in [2], with the conventional approach
ignoring the scattering and with the LCMV beamformer

implementing a derivative constraint. For the cases con-
sidered, the simulations indicate that the performance gain
compared to the mentioned conventional methods may be
considerable for signal waveform estimators, especially in
scenarios with relatively small angular spread and strong
interference. The relatively poor performance of the LCMV
method is probably due to signal cancellation e�ects.
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