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ABSTRACT

A novel wideband beamforming technique for cellular
CDMA systems is presented in this paper. The proposed al-
gorithm asymptotically provides the optimum combination
of space-time samples to maximize the SINR for the Signal
with the Desired Code (SDC) by optimally combining its
multipath and canceling strong Multi-User Access Inter-
ference (MUAI). In contrast to previously proposed tech-
niques, code synchronization for the SDC is not required.
The algorithm presented herein asymptotically provides the
exact time of arrivals of the multipaths within a bit period,
and subsequently the optimum space-time weights for com-
bining the �ngers across both space and time. The instru-
mental property exploited in this technique is the fact that
although the respective spectra of the SDC and MUAI com-
ponents at the output of the matched �lter are statistically
equal, the respective spectra of their squared values di�er.

1. INTRODUCTION

The problem investigated is that of combatting both multi-
path and multi-user access interference in a cellular CDMA
system. In order to achieve the best performance relative to
probability of bit error, the goal is to cancel strong MUAI
while simultaneously combining the multipath for the SDC
via a RAKE-type receiver. The ability to cancel strong
MUAI improves the overall capacity of the cellular system
[2]. It also eliminates the near-far problem that occurs when
the SDC transmits from the outer edges of the cell while an-
other co-channel user transmits simultaneously much closer
to the base [1].

2D RAKE receivers have been proposed in recent years
for optimally combining the multipath for the SDC across
both space and time, while simultaneously canceling strong
MUAI [3]. An algorithm is presented herein for determin-
ing the optimum space-time sample combination that has
several major advantages over previous methods [5]. First,
it does not require bit synchronization for the desired user.
Using only knowledge of the spreading waveform for the
desired user, the algorithm provides estimates of the time
of arrivals of the RAKE �ngers. Finally, synchronization
amongst the multi-users is not assumed, knowledge of the
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codes for the other users is not required, no model is as-
sumed for the antennas, and no pilot symbols are needed.

2. DATA MODEL

The scenario assumed is that of J users in a CDMA multi-
user access system sharing a common frequency band. Dis-
crimination amongst users is achieved by di�erent spreading
signatures or PN (Pseudo Noise) codes. The J coexisting
signals are collected by each of N antennas. There is no
constraint on either the antenna locations or their respec-
tive radiation patterns. The signal transmitted from the
k-th user, (1 � k � J), arrives at the antenna array via
Lk paths. The direct path of the user k is received with
amplitude �k. The remaining Lk�1 multipaths of the k-th
user are attenuated and phase shifted by the complex num-
ber �lk, 2 � l � Lk. Therefore, without lost of generality
the following notation assumes j�1kj = 1 for each of the J
users. The l-th path of the k-th user arrives with a delay
of � lk and through a direction �lk, where the boldface on �
denotes the fact that no constraint on the array geometry is
assumed so that the direction is 2-D, in general. Under the
narrowband assumption, the 2-D angle �lk in
uences only a
complex scale factor between antennas which is character-
ized by the array manifold a(�lk). Using the above notation,
the vector of the received signals x(t) is given by

x(t) =

JX
k=1

�k

LkX
l=1

�
l
ka(�

l
k)

1X
n=�1

bk(n)ck(t�nTb��
l
k)+n(t);

(1)
where bk(n) is the n�th symbol (bit) value, ck(t) is the code
assigned to the k-th user and Tb is the bit period. The code
is composed of Lc chips of duration Tc. n(t) is the noise

vector with E[n(t)nH(t)] = �2nI, �
2
n is the noise power, and

I the N �N identity matrix.
The output signal from each antenna is passed through

a matched �lter based on the spreading waveform of the
desired user. The impulse response of the �lter is h(t) =
c�1(�t), assuming the signal enumerated as j = 1 is the
desired user, the SDC. The signal vector at the output of
these �lters is

y(t) =

JX
j=1

�j

LjX
l=1

�
l
ja(�

l
j)

�

1X
n=�1

bj(n)cj(t� nTb � �
l
j) � c1(�t) + ny(t); (2)

where the operator � denotes convolution and ny(t) is an



N�1 vector containing i.i.d. random processes obtained as
n(t) � c1(�t).
With regard to each of the terms in (2), note that

ideally we would like to construct PN codes that satisfy
cj(t) � ci(t) = �ji�(t)

1, where �ji is the Kronecker delta
and �(t) is the Dirac delta function. If this condition was
strictly satis�ed only L1 terms in (2) would be non-zero

and they would take non-zero values for t = � l1, 1 � l � L1.
These terms are called �ngers. However perfect orthogo-
nality amongst codes cannot be achieved for each and every
arbitrary time delay with �nite length codes. Thus, resid-
ual cross-correlation terms arise in practical systems. These
spurious terms can be stronger than the �ngers when the
MUAI is received with much higher power levels than the
SDC, hence, the Near-Far problem.

3. SPACE-TIME PROCESSING.

The algorithm proposed herein proceeds as follows. First,
it estimates the locations of the �ngers t = � l1, 1 � l � L1.
Second, for each instant t = � l1 it �nds the beamformer that
extracts that �nger and cancels the rest of the paths present
with a signi�cant power level at that particular time. It
cancels paths corresponding to both MUAI's and the other
L1 � 1 paths from the SDC as well. The weight vector
that achieves both of these conditions is obtained from a
generalized eigenvalue decomposition. Once the �ngers are
extracted, the third step of the algorithm determines how
they should be optimally combined. Note that after the
MUAI's are canceled, the remaining noise is Gaussian.

3.1. Arrival Time and Extraction of Fingers

Let the N � N time-varying correlation matrix Ry(t) be
de�ned as

Ry(t)
def
= E[y(t)yH(t)rect

�
t

Tb

�
]; (3)

where E [�] is the expectation operator, (�)H is the conju-

gate transpose, and rect

�
t

Tb

�
is unity over an interval of

width Tb centered at t = 0 and zero elsewhere. Further, let

Sy(f) be de�ned as Sy(f)
def
= F [Ry(t)], where F represents

the Fourier Transform operating element-wise on Ry(t).
Substituting the signal model in (2) and assuming

1. the symbol values are uncorrelated for a given user as
well as between di�erent users, i.e., Efbk(n)b

�

p(m)g =

�2b�kp�nm, where �
2
b is the average energy per symbol,

2. the noise is stationary, Gaussian and i.i.d. (indepen-
dent and identically distributed) for all the antennae
with variance �2n,

3. noise is uncorrelated with each user's signal, and

4. ck(t) are PN codes, therefore the phase of the Fourier
Transform (FT) of each code Ck(f) may be well mod-
eled as a random variable uniformly distributed over
[0; 2�)

the following proposition can be made.

Theorem 1

Sy (f) =

JX
k=1

LkX
l=1

p
l
ka(�

l
k)a

H (�lk)S
ll
k (f) + �

2
nI sinc(fTb);

(4)

1
The codes are normalized to have unit energy.

where

S
ll
k (f) =

�
Sc(0)�(f) if k 6= 1

ej2��
l
1
fSc(f) if k = 1

(5)

and plk = �2kj�
l
kj
2�2b ,

Sc(f) =
��
jCp(f)j

2
� jCp(f)j

2
�
T (f)

�
� sinc(fTb); (6)

Cp(f) is the Fourier transform of the chip pulse waveform

and T (f) =
P
1

n=�1
ej2�fnTb =

P
1

n=�1
�(f � n

Tb
).

Proof: Using the de�nitions of Ry(t), Sy(f) and the
FT, Sy(f) may be expressed as

Sy(f) =

Z
1

�1

E[y(t)y(t)Hrect
�

t

Tb

�
]ej2�tfdt (7)

Substituting the signal model assumed for y(t) in (2) into
(7) and invoking the assumptions listed previously as 1 and
3, (7) simpli�es as

Sy(f) = �
2
b

Z
1

�1

(
JX

k=1

�
2
k

LkX
l=1

LkX
q=1

�
l
k�

q�

k a(�
l
k)a

H (�qk)

1X
n=�1

fck(t�nTb��
l
k)�c1(�t)gfck(t�nTb��

q

k )�c1(�t)g
�+

E
�
ny(t)n

H
y (t)

�	
rect

�
t

Tb

�
e
�j2�tf

dt (8)

Under these assumption number 2 (8) simpli�es as

Sy(f) = �
2
b

JX
k=1

�
2
k

LkX
l=1

LkX
q=1

�
l
k�

q�

k a(�
l
k)a

H(�qk)S
lq

k (f)

+�2nI sinc(fTb) where (9)

S
lq

k (f) =

Z
1

�1

1X
n=�1

fck(t� nTb � �
l
k) � c1(�t)g

�fck(t� nTb � �
q

k ) � c1(�t)g
�rect

�
t

Tb

�
e
�j2�tf

dt: (10)

In order to prove (4) and (5) we only have to guarantee

that Slqk (f) may be expressed as

S
lq

k (f) =

�
Sc(0)�(f) if k 6= 1

�lqe
j2�� l

1
fSc(f) if k = 1

(11)

Assuming ck(t) is real-valued and using elemental FT

properties Slq
k
(f) in (8) may be expressed as

S
lq

k (f) =

1X
n=�1

�
Ck(f)C

�

1 (f)e
j2�fnTbe

j2�f�l
k

�
�

�
Ck(f)C

�

1 (f)e
j2�fnTbe

j2�f�
q

k

�
� sinc(fTb) (12)

Note that by construction PN codes approximately satisfy:
i) jCk(f)j = jCp(f)j where Cp(f) is the FT of the chip
waveform, and ii) the phase of Ck(f) is a white random
process with a �rst-order p.d.f. uniformly distributed in
[0; 2�).



Let us analyze the cases k = 1 and k 6= 1.
a) k = 1
When l = q, (12) becomes

S
ll
1 (f) = e

j2�f�l
1

��
jCp(f)j

2
� jCp(f)j

2
�
T (f)

�
� sinc(fTb)

(13)

where T (f) = 1
Tb

P
1

n=�1
ej2�fnTb =

P
1

n=�1
�(f � n

Tb
)

Otherwise, if l 6= q, the integral
R
1

�1

jCp(s)j
2
jCp(f �

s)j2ej2�s(�
l
1
��

q

1
)ds is negligible whenever � l1��

q
1 � Tc, where

Tc is the chip period. In particular, for rectangular wave-
form chips and � l1� �

q
1 = Tc, the integral value is exactly 0.

For other relative delays and chip waveforms (e.g., a chip
waveform having a raised cosine spectrum) simulations con-
�rm this property holds.
b) k 6= 1
MUAIs belonging to the same system have the same chip

pulse shape and Ck(f) = jCp(f)je
jrk(f) where rk(f) is a

white random process uniformly distributed over [0; 2�).
Also the PN codes are such that the phases of any two
of them are independent. Using these properties in (12) it
follows that

S
lq

k (f) =

1X
n=�1

�
jCp(f)j

2
e
j(rk(f)�r1(f))e

j2�fnTbe
j2�f�l

k

�
�

�
jCp(f)j

2
e
j(rk(f)�r1(f))e

j2�fnTbe
j2�f�

q

k

�
� sinc(fTb) (14)

ejrk(f) and ejr1(f) are complex independent random pro-
cesses with phase uniformly distributed over [0; 2�) and con-

stant amplitude. Therefore, ej(rk(f)�r1(f)) = ejr
0

k
(f) is also

a complex independent random variables with the phase
uniformly distributed over [0; 2�). Thus, (14) is non-zero
only for f = 0 and l = q. Moreover, (14) simpli�es as

S
lq

k (0) =

Z
1

�1

jCp(s)j
4
ds = Sc(0) (15)

In a practical implementation Ry(t) is computed from a
sampled version of y(t) and Sy (f) as the DFT of Ry(n).

Since Ry(t) is only nonzero for �Tb
2
� t �

Tb
2

the DFT of
its sampled version evaluates Sy (f) at f = �

Tb
.

To substantiate the approximation in (5), Figure 1 shows

jSllk (f)j for a set of maximal length PN codes of length
Lc = 127 sampled twice per chip and a raised cosine chip
waveform with roll-o� coe�cient � = :9. Figure 1 (a)

shows jSll1 (f)j corresponding to SDC and �gure 1 (b) shows

jSll2 (f)j corresponding to the l-th path of a MUAI.

Let the matrices S
(�)
y and S

(0)
y be de�ned as Sy(f) eval-

uated at f = �

Tb
and f = 0, respectively. For f = 0,

de�ne the \cleaned" version of S
(0)
y as C

(0)
y = S

(0)
y � �minI,

where �min is the smallest eigenvalue of S
(0)
y ideally equal

to �2n in accordance with (4). Consider the matrix penciln
S
(�)
y � �iC

(0)
y

o
wi = 0. Substituting (4) and (5) yields

fSc

�
�

Tb

� L1X
l=1

p
l
1a(�

l
1)a

H (�l1)e
j2��

�l
1

Tb

��iSc(0)

JX
k=1

LkX
l=1

p
l
ka(�

l
k)a

H(�lk)gwi = 0 (16)

Note that there are L1 non-zero generalized eigenvalues

equal to �i =
sc(�)

sc(0)
e
j2��

�i
1

Tb and that each of the correspond-

ing eigenvectors satisfy wH
i a(�

l
k) / �k1�il, i.e., wi is orthog-

onal to each a(�lk), 1 � k � J and 1 � l � Lk, except a(�
i
1).

Thus, the time location of the l-th �nger may be extracted
from the phase of the l-th eigenvalue, while the correspond-
ing eigenvector provides the beamformer for extracting the
l-th �nger, 1 � l � L1.
� = 1 is required if there is no synchronization informa-

tion available. In this case, the proposed algorithm uses
the knowledge of the desired user's code to estimate the
absolute time locations of the �ngers within a bit interval.
Higher values of � lead to an indeterminacy in the time
location estimates, but at the same time yield a greater
separation in the phase of the eigenvalues thereby causing
the generalized eigenvalue problem to be better conditioned.
Simulations have revealed that the latter leads to faster con-
vergence. For cold start-up, one can proceed by �rst solving
the problem for � = 1 to roughly determine which portion
of the post-correlation bit interval the �ngers lie in, and
then use a value of � equal to the ratio of the bit duration
to the maximum multipath time delay spread.
In [6] we prove the phase of the generalized eigenvalues of

the pencil fS
(�)
y ;S

(0)
y g is the same as those satisfying (16).

Moreover, the the eigendecomposition of fS
(�)
y ;S

(0)
y g is a

better conditioned problem with a more stable solution.

3.2. Optimum Combination of the Beamformer
Outputs

In accordance with previous sections, the inner product
�l(n) = wH

l y(nTb + � l1) follows the expression

�l(n) = w
H
l y(nTb + �

l
1) = b1(n)�1�

l
1w

H
l a(�

l
1) + nl (17)

where nl = wH
l ny(nTb+� l1). We have used the signal model

in (2) and assumed the codes ck(t) are normalized to have
unit energy.
The �nal step in this time-space �ltering technique for

CDMA consists of the optimum combination of the L1

beamspace-time samples �l(n) to maximize the SINR. Let
�(n) and nw(n) be the L1�1 vectors formed with the entries
�l(n) and nl, l = 1; � � � ; L1, respectively. Now the objective

is to �nd the L1 � 1 vector 
 such that b̂(n) = 
H�(n)
maximizes the SINR.
The beamspace-time vector �(n) is formed with the out-

puts of the weight vectors wl which were proved to be
asymptotically orthogonal to all the interferences. There-
fore, there is no interference contribution to the vector �(n)
as shown in equation (17). Under these conditions the SINR
is maximized by maximizing the SNR. Moreover the SINR
maximization can be expressed as

max



E[
H�(n)�H(n)
]

E[
HnwnHw 
]
(18)

E[nwn
H
w ] = I because the entries of nw are samples of noise

taken at di�erent snapshots. Thus, the denominator in (18)

becomes 
H
. The value of 
 that maximizes the SINR is
the eigenvector corresponding to the largest eigenvalue of
the matrix

R� = E[�(n)�H(n)] (19)



4. SIMULATIONS

We here present a simulation to analyze the e�ectiveness of
the technique described herein. A scenario where the SDC
arrives through 3 paths was simulated. The angle of arrival
of the paths are 0, 3 and -2 degrees, respectively. Each ray
is delayed by one chip respect the previous one. The second
ray is 1.5 dB weaker than the direct ray (the �rst one) and
it arrives with a phase shift of 45 degrees at the center of the
array. The third ray is 2 dB weaker than the direct path and
phase shifted -90 degrees. The SWNR of the direct paths
is -5 dB before correlation with the desired code at each of
the antennae. The array is an Uniform Linear Array of 8
elements with half wavelength spacing. The chip waveform
is raised cosine with � = 0:5.
Because the angular spread of the multipath is small

compared to the beamwidth associated with the array em-
ployed, the algorithm forms a unique common beam to ex-
tract the 3 paths. The value of � = 12. 15 bits are averaged

to estimate S
(0)
y and S

(�)
y . Figure 2 shows the Bit Error

Rate (BER) when the output of the Space-Time processor
is fed to a slicer that decides each bit independently { no
coding. Figure 2 correspond to a MonteCarlo simulation
of a scenario where new MUAIs appear sequentially. The
�rst MUAI arrives at -90 degrees. The following MUAIs ar-
rive at angles in increments of 20 degrees (-90, -70,...). All
the MUAIs are 20 dB above the SDC. Thus only 1 MUAI
causes the BER to degenerate to 0.5 in the case of a single
antenna and sampling at the peak of the strongest �nger.
The BER is computed as the Q

�
d

2�

�
where 2d is the

distance between the two points of the constellation free of
noise and interferences, � is the standard deviation of the
points of the constellation around the noise and interference

free points, and Q(x) = 2
�

R
1

t=x
e�t

2

dt. d

2�
is estimated by

a MonteCarlo simulation of 4096 independent trials.

REFERENCES

[1] U. Madhow and M. Honig, \MMSE Interference
Suppression for Direct-Sequence Spread Spectrum
CDMA", IEEE Trans. Communications, vol. 42, pp.
3178-3188, Dec. 1994.

[2] B. Suard, A. Naguib, G. Xu, and T. Kailath, \Per-
formance Analysis of CDMA Mobile Communication
Systems Using Antenna Arrays", Proc. ICASSP, vol.
VI, pp. 153-156, Apr. 1993.

[3] A. Naguib, A. Paulraj, and T. Kailath, \Capacity Im-
provement with Base-Station Antenna Array in Cellu-
lar CDMA," IEEE Trans. Veh. Technology, vol. 43,
pp. 691-698, Aug. 1994.

[4] Hui Liu and M. D. Zoltowski, \Blind Equalization
in Antenna Array CDMA Systems," IEEE Trans. on
Signal Processing, Special Issue on Signal Processing
for Advanced Digital Communications, Jan. 1996.

[5] M. D. Zoltowski and J. Ramos, \Blind Multi-User
Access Interference Cancellation for CDMA Based
PCS/Cellular Using Antenna Arrays," Proc. ICASSP,
Atlanta, GA, pp. 2730-2733, May 1996.

[6] J. Ramos and M. Zoltowski, \Blind Space-Time Pro-
cessor for CDMA to Maximize the SINR." IEEE Sig-
nal Processing for Advanced Wireless Communications
SPAWC'97, Paris, France. April 1997.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized frequency (1/Tc)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized frequency (1/Tc)

b) Term  corresponding to a MUAI

a) Term  corresponding to a path of SDC

Figure 1. jSlk(k)j for a) k = 1 and b) k 6= 1.
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