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ABSTRACT

Antenna arrays can be used in mobile communication sys-
tems to increase capacity and performance. However, as
the number of antenna elements grows, the computational
burden increases significantly. To reduce the total computa-
tional cost, a beamspace transformation is derived, based
on the statistical model of the array signal. Although the
transformation derived here is applicable to many algo-
rithms, it is matched to the decoupled weighted iterative
least squares with projections RAKE-combiner algorithm.
Not only is the computational cost reduced, the overall per-
formance is improved by using an appropriate beamspace
transformation.

1.  INTRODUCTION

Several algorithms have been proposed to increase cover-
age and spectrum efficiency in a mobile communication
system by using an antenna array at the base station. In [2],
the decoupled weighted iterative least squares with projec-
tions (DWILSP) RAKE-combiner algorithm was intro-
duced. It constitutes an extension to the DWILSP algorithm
for time-dispersive fading channels [1,11]. The main
advantage of the DWILSP approach, compared to conven-
tional beamforming techniques, is its superior exploitation
of the signal structure, as well as the spatial structure of the
channel. For a brief overview of the DWILSP and
DWILSP RAKE-combiner, see the Appendices.

An increase in the number of array elements improves the
potential performance, at the expense of an increased com-
putational burden. To reduce the complexity, while keeping
the performance advantages of the larger array, the dimen-
sion of the data can be reduced with a suitably chosen
transformation. In a multi-user environment, each user sig-
nal belongs to a subspace. These subspaces are usually not
perfectly orthogonal. The objective is to extract the sub-
space of the signal of interest, while simultaneously reject-
ing interference, without affecting the spatial adaptivity of
the DWILSP algorithm.
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2.  DATA MODEL

In a scenario withd cochannel users, the signal measured at
the m-element base station antenna array can be modelled
as

(1)

wheresi(t) is the scalar signal from thei: th user (belonging
to a finite alphabet),n(t) is the m-dimensional measure-
ment noise, possibly colored, andH i (t,q) is the channel
response from useri. The channel in a mobile communica-
tion scenario is a time-varying random filter. Assuming that
the channel is constant during N array snapshots, it can be
modelled as an (L+1) tap FIR-filter

(2)

where each filter taphk is a random vector due to a local
scatter distribution [6]. The data model (1) can thus be
rewritten as

(3)

wheresi(t-kTs) are delayed versions of the signal from user
i. These source signals are assumed to be temporally white
and independent between users. Averaging over different
realizations of the channelsH i(q) and source signals (for
example bursts in a TDMA system), the array covariance
can be formulated as

(4)

whereQn is the covariance of noise and unknown interfer-
ence, andRi is the covariance of useri:

(5)

In (5), the received source signal power is included in the
channel vectors. Numerically,Ri is of full rank. However,
the effective rank is in most cases low.
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3.  BEAMSPACE TRANSFORMATION

A beamspace transformation is a linear mapping, from the
element space (ESP)m-dimensional datax(t) to the
reducedr-dimensional beamspace (BSP) datay(t):

(6)

The <m|r>  matrix T is derived, so as to reduce the ESP
data dimension as much as possible (i.e. choosing mini-
mumr), without affecting the bit error rate (BER) perform-
ance. In [3-6], Cramér-Rao bound (CRB) preserving BSP
transformations are derived in the case of certain para-
metrizations of the signal model. Here, the problem is
somewhat different, as the signal model does not rely on
any strict parametrization or array structure. In fact, the
goal is to be independent of the array response, so as to
enable the use of uncalibrated arrays. Therefore, the deri-
vation ofT is based on the statistical model (4), which also
allows a slow updating ofT. Applying (6), the BSP array
covariance becomes

(7)

Regarding userj as the signal of interest, the BSP signal to
interference plus noise ratio (SINR) can be defined as

(8)

where Tr(.) is the trace operator andQ is the total interfer-
ence covariance.T is now chosen to maximize the SINR. It
is well known [5] that theT maximizing (8) is the matrix
whose columns are the eigenvectors corresponding to ther
largest eigenvalues of the matrix pencil [Rj,Q], i.e. the
principal eigenvectors ofQ-1Rj, asQ is full rank. This can
easily be shown by rewriting (8) as

(9)

where V=Q1/2T and  denotes the Frobenius matrix
norm. With the only restriction being thatV, and therebyT,
should be full rank, (9) is maximized by choosing the col-
umns ofV to be the eigenvectors corresponding to ther
largest eigenvalues ofQ-1/2R Q-1/2. Transforming back
from V to T shows thatT is given by the principal eigen-
values ofQ-1Rj [9,10].

This result is valid for an arbitrary r. The optimal choice of
r depends on the structure of the channel and the interfer-
ence scenario. The relative magnitude of the eigenvalues of
Q-1Rj gives an indication of how to chooser. In a practical
application, the choice ofr is a trade-off between perform-
ance (BER) and computational complexity.
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The total interference covarianceQ is in most cases
unknown. It can be estimated as , but experi-
ments indicate that Q can be replaced byRx without any
significant performance loss. This replacement only results
in a small change in the subspace spanned byT. The user
covariance Rj is estimated from filter tap estimates (5).

4.  NUMERICAL EXAMPLES

From the above discussion it follows that the optimalr, i.e.
the dimension of the reduced data, depends on the eigen-
structure ofQ-1Rj. To illustrate the eigenstructure in a real
environment, the eigenvalues ofQ-1Rj were estimated from
measured data. The measured data consisted of 200 con-
secutive GSM bursts collected by a base station antenna
array in an urban area. The array output is an eight-dimen-
sional vector signal. The user signal of interest was cor-
rupted by one cochannel interferer. 200 GSM bursts
correspond to a measurement time of about one second.
During this time, the movement of the test mobile is small,
and the statistics of the channel parameters can be assumed
constant. The resulting normalized eigenvalues are shown
in figure 1.

FIGURE 1. Eigenvalues ofQ-1Rj, estimated from measured
GSM data.

As another example, a 10-element uniform linear antenna
array was employed at the receiver, in a simulated scenario
with three cochannel users. The signal emitters were placed
at -30o, 0o and 45o relative the antenna broadside. BPSK
data was transmitted in bursts of 150 bits, of which 19 bits
were used as a training sequence. The (fading) channel
associated with each user was modelled according to (2)
with 5 taps, each corresponding to a local scatter distribu-
tion [8], modelling the angular spread of the multipath. The
eigenvalues of the resultingQ-1Rj, for an element signal to
noise ratio of 6dB, and withj being the user at 0o, are
shown in figure 2.
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FIGURE 2. Eigenvalues ofQ-1Rj (simulated data).

Comparing to figure 1, the eigenvalues are more rapidly
decreasing. This is due to the larger angular spread in the
real data compared to the simulated. The transform matrix
T was evaluated for . Figure 3 shows the
BER performance of the DWILSP RAKE-combiner in the
reduced BSP, as well as in the ESP. Somewhat surprisingly,
it shows that choosing a proper dimension (i.e.r not too
large, nor too small) ofT yields an improvement in BER
relative to ESP. A heuristic explanation for this is that the
prefiltering supplied by the BSP transformation increases
the SINR. This improves the convergence properties of the
DWILSP algorithm. Also, the prefiltering prevents the
DWILSP algorithm to converge to a signal in the wrong
subspace, i.e. another user signal.

FIGURE 3. The BER of the DWILSP RAKE-combiner
with and without beamspace transformation applied.

Most significant is the reduction of total computational
cost. Table 1 shows the computational cost using different
r, relative to ESP operation.
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TABLE 1. Complexity using BSP-transformation.

In table 1, the cost for the transformation operation itself
(6) is included, but not the calculation of the transform
matrix T. This becauseT can be updated slowly, making
the average cost insignificant in the comparison.

It is interesting to compare the performance of the
DWILSP RAKE-combiner to the performance of the opti-
mal maximum likelihood sequence estimator (MLSE).
Using the same 5-tap channel as in the previous example,
figure 3 shows the BER of the DWILSP RAKE-combiner,
with and without BSP transformation (r=3), as well as the
BER of the MLSE. The MLSE was run using the true chan-
nel parameters and interference covariance matrix, thus
serving as a benchmark.

FIGURE 4. The BER of the DWILSP RAKE-combiner
with and without beamspace transformation, compared to
the optimal MLSE.

With the BSP transformation employed, the DWILSP
RAKE-combiner comes close to the performance of the
optimal MLSE at high signal to noise ratios. It should be
noted, that if the MLSE is run with parameters estimated
from the training sequence, the performance is far from the
ideal shown in figure 4 [2].

5.  CONCLUSIONS

Based on the underlying statistics of the mobile communi-
cation signal model, rather than any parametrizations in
terms of the array manifold or directions of arrival etc., a
beamspace transformation was derived. The data model
used in this derivation is the same as the one used to derive
the DWILSP RAKE-combiner receiver algorithm.
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The main reason for applying the beamspace transforma-
tion was to reduce the computational complexity, and
thereby enabling the use of a large array. However, when
processing the reduced beamspace data with the DWILSP
RAKE-combiner, a further advantage was revealed. The
increase in SINR that follows from a proper reduction of
the data dimension improves the convergence properties of
the algorithm. This potentially reduces the number of nec-
essary training bits.

The authors would like to thank Ericsson Radio Systems
for providing the measured array data.

APPENDIX A: T HE DECOUPLED WEIGHTED ITERA-
TIVE LEAST SQUARES WITH PROJECTIONS

(DWILSP) A LGORITHM

Consider the model (1) with each filterH i(t,q) replaced
with a vectorhi. Collecting N snapshots in matrix form,
and regarding user 1 as the signal of interest yields

(10)

DWILSP solves the problem

(11)

by iteratively minimizing with respect toh1 ands1. In each
iteration, the signal estimates, , are projected to the clos-
est discrete points in the signal constellation,

. The scheme is repeated until convergence
of . DWILSP thus provides estimates of both the signal,
as well as the channel vector. The weighting matrix W
should ideally be chosen asRj

-1/2, but usingRx
-1/2 gives

asymptotically equivalent estimates.

APPENDIX B: THE DWILSP RAKE-C OMBINER

The DWILSP RAKE-Combiner is an extension of
DWILSP for time-dispersive channels. Based on the model
(3), DWILSP is employed to obtain estimates of the L+1
delayed versions of user signali. These estimates are com-
bined to yield a final signal estimate as

(12)

where  is the square of the variance . The
channel estimates provided by the algorithm can be used to
track the user covarianceRj, (5).
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