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ABSTRACT

In mobile communications, often time-varying multipath
is too rapid for a conventional adaptive algorithm to track.
This motivates expansion of the time varying channel im-
pulse response over a basis. Rather than estimating the
time-invariant coe�cients of this basis expansion, it is pos-
sible to equalize the channel output directly even when the
input is not known. This requires multichannel data as well
as a minimal persistence of excitation condition on the in-
put and a coprimeness condition on the multiple channels
obtained via fractional sampling and/or multiple antennas.
Since the coe�cients of the basis expansion will not be con-
stant due to noise and unmodelled dynamics, the equalizer
coe�cients may also change slowly with time. Adaptive
algorithms to track this change are proposed and basis mis-
match problems are also investigated in this paper.

1. MOTIVATION AND BACKGROUND

Consider transmitting symbols s(l) every T seconds with

a pulse shape (transmit-�lter) f
(tr)
c (t) using a carrier

exp(j!ct). Denote the analytic form of the transmitted sig-

nal as: sc(t) = exp(j!ct)
P

l
s(l)f

(tr)
c (t� lT ). Suppose that

due to relative transmitter-receiver motion the propagation
(e.g., multipath) channel is changing and has time-varying

(TV) impulse response f
(ch)
c (t; �) =

PQ

q=1
Aq(t)�(��dq(t)),

where Q corresponds to the number of paths and Aq(t),
dq(t) denote each path's TV attenuation and delay, respec-
tively. The need to identify and equalize such TV chan-
nels arises in mobile telephony, high-speed modems, and
underwater communications [6, 7] . Note that with Aq and
dq constant, time-invariant frequency selective channels are
obtained as a special case. Fading channels on the other
hand, entail variations. Modeling fAq(t); dq(t)g

Q
q=1 as sta-

tionary random processes has been the traditional approach
[6], [11], but the focus herein is on deterministic basis ex-
pansion models introduced recently in [9] and [10].

Convolving sc(t) with f
(ch)
c (t;�) and removing the car-

rier we arrive at the received signal-plus-noise model

(baseband form): rc(t) = exp(j!ct)
PQ

q=1
Aq(t)sc(t �

dq(t)) + nc(t). To suppress the AWGN nc(t), we �l-

ter rc(t) through the receive-�lter f
(rec)
c (t) and obtain

xc(t) =
P

l
s(l) [

PQ

q=1

R lT
(l�1)T

Aq(�) f
(tr)
c (� � lT � dq(�))

f
(rec)
c (t��) exp(j!cdq(�))d� ]+

R lT
(l�1)T

nc(�)f
(rec)
c (t��)d� .

Let f2(t):=
R
T
f
(tr)
c (�)f

(rec)
c (t � �)d� denote the time in-

variant transmit-receive �lters in cascade, and assume:
(a1)constant attenuation and delay over a symbol; i.e.,
Aq(�) = const::=Aq(l), for � 2 [(l � 1)T; lT ], and dq(�) =
const::=dq(l), for � 2 [(l� 1)T; lT ];
(a2)linearly varying delays across symbols (valid for nomi-
nally constant path velocity �q); i.e., dq(l) = �q l+�q. Under
(a1), we have xc(t) =

P
l
s(l)hc(t; t� lT ) + vc(t), where

hc(t; t� lT ):=

QX
q=1

Aq(l)f2(t� lT � dq(l))e
j!cdq(l) : (1)

Output xc(t) is next (over)sampled with period T=M

to obtain the discrete time model: x(n):=xc(nT=M) =P
l
s(l)h(n;n�lM)+v(n), where h(n; l):=hc(nT=M ; lT=M)

and v(n):=vc(nT=M). Oversampling o�ers diversity mani-
fested in theM sub-processes de�ned as fx(m)(n):=x(nM+
m � 1)gMm=1 which are expressed in terms of the M sub-
channels h(m)(n; l) and the corresponding noise v(m)(n) as:

x
(m)(n) =

LX
l=0

h
(m)(n; l)s(n� l) + v

(m)(n) ; (2)

where h(m)(n; l):=h(nM+m�1; lM+m�1):= hc(T (nM+

m�1)=M ;T (lM+m�1)=M) =
PQ

q=1
Aq(n� l) f2(T (lM+

m�1)=M�dq(n� l)) exp(j!cdq(n� l)). Because the varia-
tion of Aq and f2 w.r.t. n is often negligible relative to that
of the exponential, it is reasonable to assume:
(a3)Aq(n� l) � Aq(l), and f2(T (lM +m� 1)=M � dq(n�
l)) � f2(T (lM +m� 1)=M � dq(l)).
Based on (a1)-(a3) we have:

h
(m)(n; l):=

QX
q=1

h
(m)
q (l)bq(n� l) ; bq(n):=e

j!c�qn ; (3)

where h
(m)
q (l):=Aq(l)f2(T (lM+m�1)=M+�ql��q)e

j!c�q .

Using the Fourier basis fexp(j!qn) ; !q:=!c�qg
Q

q=1 the TV
model in (2) is expressed in (3) as a superposition ofQ chan-

nels fh
(m)
q (l)gQq=1. The latter are time-invariant (TI) and al-

low blind estimation of �nitely parameterized TV channels
using TI multichannel identi�cation and source separation
techniques. The complex exponentials in (3) can be viewed
as each path's Doppler arising due to motion { an e�ect
also encountered in radar and sonar where moving targets
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Figure 1. TV - Channel Model

induce TV delays which for narrowband signals manifest
themselves as TV phases. Single path Doppler e�ects were
also included in [7], but the challenge here is on blind miti-
gation of TV intersymbol interference (ISI) and separation
of the multiple paths. The unknown frequencies !c�q in (3)
can be estimated using tests of cyclostationarity [9].

The basic idea of casting TV multipath models as mix-
tures of TI ones was �rst adopted in [10] but the high-
variance of high-order statistics motivated second-order
subspace methods relying on symbol rate sampling (c.f. (1)-
(3) with m = M = 1) [8]. However, insu�cient diversity
in [8] necessitated strong independence assumptions on the
bases in order to guarantee identi�ability. The indepen-
dence required by [8] is rarely satis�ed in practice for Q > 2.
Apart from fractional sampling, su�cient diversity is also
provided by multiple antennas [4]. Such space and time
diversities can be exploited separately or jointly as in the
identi�cation methods for TI channels [5, 12].

Collecting x(m)(n)'s in an M � 1 vector x(n):= [x(1)(n)
: : : x(M)(n)]0, and de�ning hq(l) and v(n) similarly, we com-
bine (2) and (3) into the vector model (see also Fig. 1):

x(n) =

QX
q=1

"
LX
l=0

hq(l)bq(n� l)s(n� l)

#
+ v(n) : (4)

Note that s(n) in (4) is not assumed to be white or even
random as in [8, 10].

Knowing the bases fbq(n)g
Q

q=1 and measuring only the

vector output fx(n)gN�1
n=0 , this paper deals with: (i)FIR

adaptive zero-forcing equalization to track slow variations
in hq(l)'s (note that rapid variations are accounted for by
the bases); and (ii)model mismatch issues to assess possible
perturbations in the basis sequences (Section 3).

2. DIRECT BLIND EQUALIZERS

In [1] it is shown that the input can be blindly recovered
within a delay d (non-identi�able in blind setups) with Kth-

order FIR equalizers fg
(d)
q (k)gKk=0:

KX
k=0

x
0(n� k) g(d)q (k) = sq(n� d) ; q = 1; : : : ;Q ; (5)

where sq(n � d):=bq(n � d)s(n � d) denotes the recov-
ered input modulated by the qth basis. If we de�ne
s0q(n):=[bq(n)s(n) : : : bq(n�L�K)s(n�L�K)], the input

and the channel matrices are given as follows:

Sb:=

2
4 s01(N � 1) : : : s0Q(N � 1)

...
...

...
s01(K) : : : s0Q(K)

3
5 ; H:=

2
4 H1

...
HQ

3
5

where

Hq:=

2
666664

h0q(0) : : : 00

...
.. .

...
h0q(L) : : : h0q(L�K)

...
.. .

...
00 : : : h0q(L)

3
777775 :

Then, noise-free matrix version of (4) is:

X :=

2
4 x0(N � 1) : : : x0(N � 1�K)

...
...

...
x0(K) : : : x0(0)

3
5 = SbH ; (6)

where N;K;M;L denote the data length, equalizer order,
oversampling rate, and maximum channel order respec-
tively. Matrix Sb is, Sb := [S1 : : :SQ] where each Sq is an
(N�K)�(L+K+1) Hankel matrix formed from the mod-
ulated input sequence sq(n) = s(n)bq(n) and each Hq is a
block Toeplitz matrix of dimension (L+K+1)�M(K+1).
We make the following assumptions:
A1. N � K � M(K + 1) satis�ed by collecting su�cient
data.
A2. Matrix H is at least fat; M(K + 1) � Q(L+K + 1)
A3. Matrix H is full rank; rank(H) = Q(L+K + 1).
A4. The bases bq(n) are su�ciently varying and s(n) is
persistently exciting of su�cient order to assure rank(Sb) =
Q(L+K + 1); again, s(n) can be random or deterministic.
Using A2 and A4 we can infer rank(X) = Q(L+K+1).

To determine the channel order L and number of bases Q
given two known upper bounds ~K1 > ~K2 on K, we use the
ranks of the corresponding matrices ~X1, ~X2 to write

Q =
rank( ~X1)� rank( ~X2)

~K1 � ~K2

; L =
rank( ~X1)

Q
� ( ~K1 + 1) :

Having Q and L, the oversampling rate M will determine
K to satisfy M(K + 1) � Q(L+K + 1).
Considering X = SbH, under A2, A3 we can assert the

existence and uniqueness of a G which contains the equal-

izer coe�cients. Speci�cally, with G = Hy, the pseudoin-
verse of H, we �nd XG = Sb; hence, given H FIR zero-
forcing equalizers G exist and are unique.

2.1. Batch Algorithm

To �nd the equalizers, set n = N � 1; : : :K in (5) and

form the equation X g(d)
q = s

(d)
q := ~B

(d)
q s(d) , where

g(d)
q :=[g

(d)0

q (0) : : :g
(d)0

q (K)]0, s
(d)
q :=[bq(N � 1�d)s(N � 1�

d) : : : bq(K�d)s(K�d)]
0, ~B

(d)
q :=diag[bq(N�1�d) : : : bq(K�

d)], and s(d):=[s(N � 1 � d) : : : s(K � d)]0. We now use
Matlab's notation X(i1 : i2; :) to denote a submatrix of X
formed by the i1 through i2 rows and all columns of X to
de�ne X0;d:=X(d+1 : N �K; :), Xd:=X(1 : N �K� d; :),

B
(0;d)
q := ~B

(d)
q (d+ 1 : N �K;d+ 1 : N �K) = diag[bq(N �



1 � 2d) : : : bq(K � d)], and B
(d)
q := ~B

(d)
q (1 : N � K � d; 1 :

N �K � d) = diag[bq(N � 1� d) : : : bq(K)].

Due to the structure of Sb, it holds that X0;d g(0)
q1 =

B
(0;d)
q1 s(0)(d + 1 : N � K) and Xd g(d)

q2 = B
(d)
q2 s

(d)(1 :

N�K�d). Since s(0)(d+1 : N�K) = s(d)(1 : N�K�d)

we can cross multiply with portions of ~B
(d)
q to obtain:

B
(d)
q2 X0;d g(0)

q1 = B
(0;d)
q1 Xd g(d)

q2 : (7)

The pair of equalizers (g(0)
q1 ;g

(d)
q2 ) will be identi�able (up to

a scale) as the eigenvector corresponding to the minimum

eigenvalue of X
(0;d)
q1;q2 in

X
(0;d)
q1;q2g

(0;d)
q1;q2 :=

h
B
(d)
q2 X0;d �B

(0;d)
q1 Xd

i� g(0)
q1

g(d)
q2

�
= 0 ; (8)

provided that the nullity �(X
(0;d)
q1;q2) = 1. For equalizers cor-

responding to (0; d) = (0; L+K), this is true provided that:
(i) rank(Sb) = Q(L+K + 1), (ii) A2 holds as an equality,
and (iii) A3 is satis�ed. Having a zero delay equalizer, we
can compute any d delay equalizer using the relation (7).
Equalizers corresponding to di�erent delays and bases per-
form di�erently depending on the channel. The equalizer
that has minimum norm (induced by the quadratic g0Rvg)
among all g that is a column of G will amplify the noise
the least, therefore perform better (see also [2]). An aver-
age of the outputs of di�erent equalizers weighted by the
inverse of their norm often yields more reliable estimates of
the input.
An alternative approach that also exploits the structure

in the input matrix utilizes that range(X0X) = range(H)

(see [5]). From the data matrix X, ~H = FH can be cal-
culated where F is a Q(L + K + 1) � Q(L + K + 1) full
rank ambiguity matrix. F can be calculated identical to
how the equalizer coe�cients were calculated above. No-
tice that F is Q(L+K+1)�Q(L+K+1) and knowledge
of all the columns of F enables calculation of H. Also, the
block Toeplitz structure of H can be exploited to bring an
additional criterion on the selection of F which may yield
more accurate estimation of its columns.

2.2. Adaptive Algorithms

Equation (8) can be recast in a least squares framework

by setting the �rst coe�cient of g(0;d)
q1;q2 to 1 and can be

rewritten as X g = x = �x1, where X is X
(0;d)
q1;q2 without

its �rst column, x1 is the vector containing the elements

of that column, and g is g(0;d)
q1;q2 without its �rst element.

It is well known that RLS is a recursive way of computing

gLS = (X
0

X )�1 X
0

x which also solves the least squares
problem. We use this algorithm to update the vector of
equalizer coe�cients.

One could also be interested in using the computationally
less intensive LMS algorithm at the expense of less accu-
racy and slower convergence. In the absence of a training
sequence (desired input), we consider the elements of x1 as

our desired sequence that we would like ĝ
0

t�̂t to estimate.
Here �̂t are the rows of X , and ĝt is the estimate of the vec-
tor of equalizer coe�cients at time t. At each iteration the

vector of equalizer coe�cients is updated by the relations

ĝt+1 = ĝt + ��
�

t+1�̂t ; �t = ĝ
0

t�̂t � x1t (9)

where � is the step size parameter and x1t denotes t
th scalar

entry of x1.

2.3. Basis Mismatch

So far we have assumed perfect knowledge of the basis.
It is of interest to analyze the errors �h, �g, �s in the
vector channel, equalizer, and input estimates, when the
bases are only known (or estimated) within a mismatch
error �bq(n). Speci�cally, we will assume j�bq(n)j �
1 for all q 2 [1;Q] and utilize �rst-order perturbation
analysis in order to obtain channel and input perturba-
tions, ��h:= [��h01(0) : : :��h0Q(0) : : : ��h01(L) : : :��h0Q(L)]

0

and ��s:=[�s(N � 1) : : :�s(0)]0, that match the received
data in the least-squares (LS) sense.
To isolate the basis mismatch e�ect from the receiver

noise we consider v(n) � 0 in (4) and de�ne Hq:=
[hq(0) : : :hq(L)], s(n):=[s(n) : : : s(n � L)]0. Suppose we
use bq(n) in our algorithms although the true basis is
bq(n) + �bq(n), and hence the noise free data model is:

x(n) =
PQ

q=1
(bq(n) + �bq(n))Hqs(n). Using bq(n) in-

stead of bq(n) + �bq(n) will result in perturbed estimates
Hq + �Hq and s(n) + �s(n). The latter correspond to a

model x̂(n) =
PQ

q=1
bq(n)(Hq+�Hq)(s(n)+�s(n)). Using

�rst order approximations and assuming jj�Hqjj � jjHqjj,
jj�s(n)jj � jjs(n)jj, the error e(n):=x̂(n)� x(n) turns out
to be:

e(n) =

QX
q=1

bq(n)Hq�s(n)+

QX
q=1

[bq(n)�Hq��bq(n)Hq]s(n):

Vectorizing f�Hqg
Q

q=1 to �h and f�s(n)gN�1
n=0 to

�s(n), we seek the minimizers (��h;��s) of jjejj2:=N�1PN�1

n=0
jje(n)jj2. They turn out to be the LS solution of:

[A C ]

�
��h
��s

�
= �C s ; (10)

where s:=[s(N � 1) : : : s(�L)]0, C:=
PQ

q=1 diag[bq(N �

1) Hq : : : bq(0)Hq], �C:=
PQ

q=1
diag[�bq(N � 1)Hq : : :

�bq(0)Hq), A:=[A0(N � 1) : : :A0(0)]0, and A(n):=
[b1(n)s

0(n)
I : : : bQ(n)s
0(n)
I] (
 denotes Kronecker prod-

uct).
Note that ��h, ��s obtained from (10) can serve only as a

reference for the channel and input errors that result from
small perturbations of the basis. It is possible for an algo-
rithm to have smaller �h and/or �s, but a larger matching

error jjejj2. Similar analysis is also possible for �g.

3. SIMULATIONS

We tried the LMS and the RLS with bases b1(n) = 1,
b2(n) = exp(j2�n=50). For both algorithms we had L=3,
K=0, M=8. N=300 (RLS) N=500 (LMS) QPSK samples
were generated. All results were averaged over 100 Monte
Carlo runs, except for the eye diagrams that show one re-
alization of the data and the equalized output. The RLS



estimate is initialized with 0 whereas the LMS curves were
initialized with a batch estimate based on the minimum
number of data required by A1. In Figure 5 the eye di-
agrams illustrate how utilizing all the delays improves the
input estimate for a channel of M = 8, L = 2 and K cho-
sen to be 0 (see [3] for channel coe�cients). The plot on
the left in Figure 5 is the output of the zero-delay equal-
izer, and the plot on the right is an average of the ouputs
of all the equalizers inversely weighted by their norms at
SNR=20 dB. This weighting was also observed to perform
better than straight averaging in the simulations.
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Figure 2. RLS algorithm, approximate initialization
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Figure 3. RLS with the number of iterations
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Figure 4. Performance of the LMS algorithm
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Figure 5. Zero-delay vs average equalizers


