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ABSTRACT quency, the demodulated and sampled received signal

can be modeled by,The problem of separating and estimating signals

received by an array whose array manifold has an un-

known structural form is usually referred to as the blind NX
jÁ (t )n ksignal copy problem. In this paper we consider the x(t ) = a e +n(t ) = As(t ) +n(t ) (2)k n k k k

blind signal copy problem for polynomial phase sig- n=1

nals. By deriving the Cramer Rao bound we evalu-
where a is the array manifold corresponding to thenate the optimal performance achievable by any unbi-
n-th source, and A is the M £N matrix consisting ofased estimator. To gain additional insight into this
array manifold vectors. We assume that fn (t);m =mproblem we compare the CRB to the bound for the
1; ¢ ¢ ¢ ;Mg is a white zero mean complex circular Gaus-case where the functional form of the array manifold
sian random process with variance ´, and noise samplesis known. We derive a computationally e±cient ap-
at di®erent sensors are uncorrelated with each other.proximate Maximum-Likelihood (ML) algorithm and
The identi¯ability of A is discussed in [1]. A can be atcompare its performance with the bound.
best identi¯ed up to permutation and complex scaling

of its columns. Therefore, we can assume without lossP1. INTRODUCTION K 2of generality that js (t )j = K and b = 0 forn k n0k=1

n = 1; ¢ ¢ ¢ ;N .In this paper we consider the problem of separation and
The problem can be stated as follows: Given theestimation of signals received by an array whose array

measurements fx(t ); k = 1; ¢ ¢ ¢ ;Kg, estimate the sig-kmanifold has an unknown structural form. This prob-
nal phase parameters fb ; n = 1; ¢ ¢ ¢ ;N; p = 1; ¢ ¢ ¢ ; Pgnplem is usually referred to as the \blind signal copy"
and the array manifold vectors fa ; n = 1; ¢ ¢ ¢ ;Ng. Innproblem. Blind estimation techniques rely on some
the following, we derive the Cramer Rao bound (CRB)temporal or statistical properties of the source signals.
for this problem. Next, we derive a computationallyFor example, fourth-order comulants methods exploit
e±cient approximate Maximum-Likelihood (ML) algo-the non-Gaussian nature of the source signals [1]{[2].
rithm and compare its performance with the bound.Other methods are based on the discrete-alphabet prop-

erty of digital signals [3]. In this paper we assume that
2. THE CRAMER RAO BOUNDthe source signals are polynomial phase signals.

To formulate the problem consider N signals im-
ÃDenote the vector of unknown parameters by ÃÃ, i.e.,pinging on an array of M elements. The n-th signal is

j! t0s (t)e where ! is the carrier frequency and s (t) isn 0 n T TÃ µÃÃ = [´; b ; ¢ ¢ ¢ ; b ; µµ ] (3)11 NPa constant amplitude polynomial phase signal of known

order P . where b is the p-th phase parameter of the n-th sourcenpP µand µµ contains the elements of A in a vector formP pj b tnpjÁ (t)n p=0s (t) = ® e = ® e (1)n n n

Assuming that the instantaneous frequency variations T T T T Tµµµ = [Refa g; Imfa g; ¢ ¢ ¢ ;Refa g; Imfa g] (4)1 1 N N
over the array are small compared to the center fre-

Note that the complex amplitudes of the sources wereThis work was supported by the O±ce of Naval Research

µunder contract No. N00014-95-1-0912. absorbed in µµ.



D (t ) = [AS (t ); ¢ ¢ ¢ ; AS (t )]b k 1 k P k

D (t ) = S(t ) Ik k Mµµµ · ¸
@s (t ) @s (t )1 k N k

S (t ) = diag ; ¢ ¢ ¢ ;p k
@b @b1p Np

S(t ) = [s (t ); ¢ ¢ ¢ ; s (t )] [1; j] (8)k 1 k N k

and  denotes the Kronecker product

Ã µThe derivatives of R (ÃÃ) with respect to b and µµx

are all equal to zero, and the derivative with respect to

the noise variance ´ is simply

Ã@R (ÃÃ)x
= I (9)MK

@´

Substituting (7) and (9) in (5) we get the following

expressions for the elements of the FIM,
Figure 1: Various bounds on the frequency-rate

standard Deviation. f = 60 Hz. Blind bounds
MK

(solid line), single source blind bound (dashed F =´´ 2´line), non-blind bound (dash-dot line), single
F = 0´bsource non-blind bound (dotted line).

F = 0µ´µµ
KX2 HF = Re[D (t )D (t )]¡1 bb k b kbÃ Ã ÃThe CRB for ÃÃ is given by CRB(ÃÃ) = [F (ÃÃ)] ´
k=1Ã Ãwhere F (ÃÃ) is the Fisher information matrix for ÃÃ. For
KXGaussian complex observations fx(t )g the entries of 2k HF = Re[D (t )D (t )]k kbµ µbµµ µµthe Fisher Information Matrix (FIM) can be written ´
k=1

as,
KX2 HF = Re[D (t )D (t )] (10)k kµµ µµµµµ µµµµµ´½ ¾
k=1Ã Ã@m (ÃÃ) @m (ÃÃ)x xH ¡1Ã[F (ÃÃ)] = 2Re [ ] R [ ] (5)il x@Ã @Ãi l Let us de¯ne the following N-by-N matrices that½ ¾

Ã Ã summarize the temporal characteristics of the sources.@R (ÃÃ) @R (ÃÃ)x x¡1 ¡1Ã Ã+ tr R (ÃÃ) R (ÃÃ)x x@Ã @Ãi l

KX
¤Ãwhere R (ÃÃ) is the covariance matrix of the observa-x (R) = s (t )s (t )nl n k klT T T Ãtion vector [(x(t )) ; ¢ ¢ ¢ ; (x(t )) ] and m (ÃÃ) is its1 K x k=1

mean. K
¤X @s (t )klÃIn our case R (ÃÃ) = ´I where I is the identityx (R ) = s (t )p nl n k
@blpmatrix of dimension MK and k=1

K
¤X @s (t ) @s (t )n k klT T T (R ) = (11)Ã ps nlm (ÃÃ) = [(As(t )) ; ¢ ¢ ¢ ; (As(t )) ] (6)x 1 K @b @bnp ls

k=1

ÃIt follows that @m (ÃÃ)=@´ = 0 andx
Note that

H HD (t )D (t ) = [S (t )S(t )] I (12)Ã@m (ÃÃ) k k k k Mx µT T T µµµµµ= [(D (t )) ; ¢ ¢ ¢ ; (D (t )) ]b 1 b K
@b It follows that

Ã@m (ÃÃ)x T T T= [(D (t )) ; ¢ ¢ ¢ ; (D (t )) ] (7)1 Kµ µµµ µµµ ½µ · ¸¶ ¾@µµ
2 1 j

¤F = Re R   I (13)Mµµµµµµwhere ¡j 1´
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where the source correlation matrix R is de¯ned in (11). where f is the sampling frequency and T = K=fss

In a similar fashion we can show that is the duration of the observation interval. » = 1,1

and » assumes the values f¡1; 0:8;0:9; 0:95g for cases22 3 1, 2, 3, and 4, respectively. In Case 1, each of the
H ¤ H ¤A A£R ¢ ¢ ¢ A A£R11 1P source signals and its derivatives with respect to the2 6 7. . .. . .F = Re4 5 phase parameters are approximately orthogonal to thebb . . .´
H ¤ H ¤ other source signal and its derivatives. In this case weA A£R ¢ ¢ ¢ A A£RP1 PP

expect a single source performance. The other cases(14)
represent transition from orthogonal sources to nearlywhere £ denotes the Hadamard product and R isps
coherent sources. For each case we plot the followingde¯ned in (11). We can also show that
bounds: The bound derived in this paper (blind CRB),

2 its single source version (single-source blind CRB), theH HF = Re[G ; ¢ ¢ ¢ ; G ] (15)1 Pµµµb ´ non-blind CRB and its single source version. In all

cases the single-source blind CRB coincides with thewhere
single source non-blind CRB, indicating that in the sin-

gle source case the assumption of unknown structure of
T H the array manifold does not cause any degradation inG = (R [r ; jr ])£(r A ) p = 1; ¢ ¢ ¢P (16)p M M 2Np

performance. In the case of approximately orthogo-

nal signals (case 1), all 4 bounds coincide, indicatingand r is a length-M row vector of ones.M

that both blind and non-blind bounds predict singleCombining the above results we get the following
source performance. A similar situation occurs in caseexpression for the FIM
2, where the source signals are neither approximately

orthogonal nor close to coherent. In cases 3 and 4,
2

however, the sources are nearly coherent, and the two-ÃF (ÃÃ) = Re (17)
´ source bounds depart from each other and from the2 3MK 0 0 0 0 single source bound. In these cases, the assumption2´

H ¤ H ¤6 70 (A A)R ¢ ¢ ¢ (A A)R G of unknown structure of the array manifold causes sig-111 1P6 76 7. . . . . ni¯cant performance degradation relative to the case. . . . .6 7. . . . .6 7 where the functional form of the array manifold is per-
H ¤ H ¤4 50 (A A)R ¢ ¢ ¢ (A A)R GPP1 PP fectly known. Furthermore, it is not possible to achieve

H H0 G ¢ ¢ ¢ G Q1 P single source performance.

where
3. AN APPROXIMATE ML ALGORITHMµ · ¸¶

1 j
¤Q = R   I (18)M Without loss of generality we can rewrite the signal¡j 1

model in Eq. (2) in the following way,
We refer to the bound derived in this paper as the

\blind CRB." To gain some insight into the problem

under consideration we compare the blind CRB to the x(t ) = A¤s(t ) +n(t ) k = 1; ¢ ¢ ¢ ;K (20)k k k

bound for array manifold with known functional form

which was derived in [4] and will be referred to as the where ¤ is a diagonal matrix with real positive entries
H\non-blind" CRB. and (A A) = M . It can be shown that the MLnn

In the example of Figure 1 we consider a pair of estimator minimizes the following cost function with

linear FM chirps (second order polynomial phase sig- respect to the phase and the array parameters.

nals). We use an 8 element uniform linear array with

half wavelength spacing. We assume that the number
KXof samples K is 120. The direction of the ¯rst source H HJ = trf¤A A¤ s(t )s (t )gk k

is ¯xed at 0 degrees, while the direction of the second
k=1

sources is varied according to the source separation. " #
KXWe ¯x the SNR at 0 dB and plot the standard devia- H H

¡ 2Re trf¤A x(t )s (t )g (21)k k
tion of the frequency rate estimate as a function of the

k=1
source separation. The source signals are given by,

As discussed in [4] polynomial phase signals tend to
2j2¼0:25» f (t¡t =T )n ss (t) = e n = 1;2 (19) be orthogonal to each other, unless they are identicaln



^ ^fb ; ¢ ¢ ¢ ; b g = arg maxn1 nP
b ;¢¢¢;b1 P

M KX X
P

¡j(b t +¢¢¢;+b t ) 21 k P kj y (t )e j (24)m k

m=1 k=1

b. Remove temporarily the n-th source from fy(t )gk

by

P
P p^

¡j b tnp kp=1y(t ) Ã¡ y(t )ek k

KX1
y(t ) Ã¡ y(t )¡ y(t )k k k

K
k=1P

P p^j b tnp kp=1y(t ) Ã¡ y(t )e (25)k k

Figure 2: RMSE of frequency and frequency rate for k = 1; ¢ ¢ ¢ ;K
vs. SNR. f = 60 Hz. CRB (solid line), Monte-s 3. Remove permanently the N-th source from fx(t )gk

Carlo results ('+') in a similar fashion to (25).

4. N Ã¡ N ¡ 1. If N ¸ 1 go to Step 1.

P To demonstrate the performance of the above algo-K H(or nearly identical). In this case s(t )s (t ) ¼k kk=1 rithm we present the results of a simulated experiment
KI , where I is the identity matrix of dimension N .

and compare them with the CRB. In this experiment
Using the above approximation we get the following

we used the scenario of Section 2 with » = 0:7. We2
ML algorithm:

¯xed the source separation at 5 degrees, and consid-

ered SNR values of -10, -5, 0, and 5 dB. At each SNR
1. Evaluate the following cost function

value we performed 100 Monte-Carlo runs. The results

are shown in Figure 2, where we plot the RMS errors

of the phase parameter estimates as a function of theJ (b ; ¢ ¢ ¢ ; b )1 1 P
SNR. The phase parameters are represented by the ini-

M KX X
P tial frequency of the chirp, and its frequency rate. At¡j(b t +¢¢¢;+b t ) 21 k P k= j x (t )e j (22)m k

the SNR values under consideration there is a good
m=1 k=1

agreement with the CRB.

^ ^2. Identify N local peaks in J . fb ; ¢ ¢ ¢ ; b g are the1 n1 np
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