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ABSTRACT

In recent years a number of methods for blindly sepa-
rating superimposed digitally modulated signals arriving
at an antenna array have been proposed. These tech-
niques are e�cient at the up-link (mobile to base) in
a mobile communication system. However, for solving
the base-to-mobile beamforming problem it may be nec-
essary to also estimate the directions-of-arrival (DOAs)
of the various signal paths. We present an optimal de-
coupled DOA estimation procedure based on informa-
tion from the blind separation algorithm. Its perfor-
mance is evaluated in the presence of spatially corre-
lated noise and array modeling errors. The proposed
technique has computational advantages as compared to
traditional DOA estimation, because the di�erent sig-
nal waveforms are treated in a separated fashion. Yet,
the decoupled approach is shown to be substantially less
sensitive to modeling errors and interference.

1. INTRODUCTION

During the past decade, a number of signal structure
based approaches for blind signal estimation have ap-
peared in the literature. Besides fractionally spaced
equalization, an important application of these algo-
rithms is signal separation in base station antenna ar-
rays. The idea is to use knowledge of the signal struc-
ture to derive signal waveform estimates without re-
quiring expensive direction-of-arrival (DOA) estima-
tion. The signal properties that have been exploited
include constant modulus [1, 2], non-Gaussianity [3,
4], cyclic correlation properties [5] and �nite alphabet
structure [6, 7, 8].

However, these methods apply only on the up-link
(mobile to base), since they require an estimate of the
communication channel. In a TDD (Time-Division Du-
plex) system, the up-link channel can be expected to
be at least close to the down-link channel, implying
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that the derived blind beamformer can be used also for
down-link beamforming. Unfortunately, most surface-
covering mobile communication system use FDD (Freq-
uency-Division Duplex), which means that di�erent car-
riers are used for up-link and down-link communica-
tion. The up-link beamformer may then be useless at
the down-link, because the fading is likely to be com-
pletely di�erent at the new carrier. The following three
approaches have been proposed to solve the down-link
beamforming problem: 1) Estimate the DOAs of all
signal paths. Compute the steering vectors at the new
carrier frequency (if necessary) and form a transmit
beamformer that nulls all undesired signal paths (e.g.
[9, 10]); 2) Incorporate mobile-to-base feedback of the
signal quality [11]; 3) Assume that the up-link and
down-link fading statistics are the same. Track the
up-link fading statistics and use these to construct an
\on-the-average optimal" down-link beamformer [12].

All of these have drawbacks: 1) requires a calibrated
array, 2) requires modi�cations in existing communi-
cation systems and cost bandwidth, whereas 3) may
perform poorly in severe multipath scenarios. The ap-
proach suggested here is to use DOA estimation as in
1), but exploiting preliminary signal estimates from the
separation algorithm. This approach is demonstrated
to alleviate the sensitivity to calibration errors and in-
terference.

2. DOA ESTIMATION

Suppose anm-element antenna array receives the wave-
forms of d narrowband emitters. At baseband, the ar-
ray output is modeled by the following familiar equa-
tion

x(t) =

dX
k=1

aksk(t) + n(t) ; t = 1; : : : ; N: (1)

Here, sk(t) is the k:th waveform, n(t) is the noise vec-
tor, whereas ak is the spatial signature of user k. The



noise is assumed to be circularly symmetric with un-
known and arbitrary covariance matrix, and the signal
waveforms are uncorrelated. Assuming frequency-
at
fading, the spatial signatures are modeled by

ak =

dkX
l=1

�kla(�kl) ; (2)

where �kl is the re
ection coe�cient and �kl is the
DOA of the l:th signal path emanating from user k.
The number of such paths is denoted dk. The function
a(�) is termed the array manifold, and it represents the
response of the array to a unit signal from the DOA
�. Clearly, any DOA estimator requires information of
the functional form of a(�). In most practical cases,
the manifold must be measured experimentally (cali-
bration), which is a costly and time-consuming proce-
dure. In addition, the resulting manifold is inevitably
subject to errors.

Blind estimation procedures are often employed for
circumventing the need for array calibration. However,
the estimated signal waveforms can also be used for
DOA estimation. The problem of interest herein is to
estimate the DOAs f�klg

dk

l=1
associated with a partic-

ular user k, given observations fx(t)gNt=1 and signal
waveform estimates fsk(t)gNt=1. Similar1 to [13], one
may postulate a model for user k:

x(t) = A(�k)bk sk(t) + j(t) ; (3)

where

A(�k) = [a(�k1); : : : ; a(�kdk )] (4)

bk = [�k1; : : : ; �kdk ]
T (5)

and where j(t) represents the contribution of the \in-
terfering" signals plus noise. Given an estimate sk(t)
provided by the blind algorithm2, we can model j(t)
as a white Gaussian noise and derive the maximum
likelihood (ML) estimate of �k = [�k1; : : : ; �kdk ]

T . As-
suming j(t) to be circularly symmetric j(t) 2 N (0;Q),
the model (3) is identical to the parameterized signals
model considered in [14].

The following notation is introduced:

�̂
?

= I� Q̂
�1=2

A(A�

Q̂
�1

A)�1A�

Q̂
�1=2

(6)

Q̂ = R̂xx � r̂xsr̂
�1

ss r̂
�

xs (7)

r̂xs =
1

N

NX
t=1

x(t)s�
k
(t) ; (8)

where the argument ofA = A(�k) has been suppressed
for notational simplicity. Further, (�)� is Hermitian

1In [13], only the case where dk = 1 is treated.
2With some abuse of notation, we use the symbol sk(t) both

for the true signal and its estimate.

transpose, Y�1=2 denotes a Hermitian square-root of a
positive de�nite matrix Y and the sample covariances
R̂xx and r̂ss are de�ned similarly to (8). From [14],
the exact ML estimate of �k is obtained by solving the
following dk-dimensional optimization problem

�̂k = argmin
�k

f(�k) (9)

f(�k) = k�̂
?

Q̂
�1=2

r̂xsk
2 : (10)

Once �̂k has been computed, the complex signal am-
plitudes derive from the expression

b̂k = (A�Q̂
�1

A)�1A�Q̂
�1

r̂xsr̂
�1

ss
: (11)

Note that the decoupled ML method requires a dk-
dimensional search for each signal waveform, as op-
posed to a full

P
dk-dimensional optimization that is

necessary when the blind signal estimates are not ex-
ploited. It may also be noted that the above exact ML
approach di�ers from that of [13] in that the data are

weighted by Q̂
�1=2

rather than R̂
�1=2

. It may be ar-
gued that the weightings are asymptotically equivalent
for large N .

3. PERFORMANCE ANALYSIS

Note that the estimated signal waveform sk(t) is treated
as being exact, which means that the above method can
also be viewed as an extension of the decoupled ML al-
gorithm of [15]. Indeed, the optimality of the decoupled
approach in the absense of modeling errors follows from
[15]. However, in practice the signals are estimated us-
ing a blind signal separation algorithm. Thus, the ef-
fects of such modeling errors is of interest. Using a �rst
order analysis, it is straightforward to show that the ra-
tio of the DOA MSE error due to ~sk(t) and that due
to j(t) is asymptotically (for large N) proportional to
E[j~sk(t)j2]=rss, which in turns is essentially the symbol-
error-rate (SER) of signal k. In a practical system, the
operating region is better than SER=1%, which indeed
suggests that the estimated signal waveforms can be re-
garded as exact.

The asymptotic (for large N) variance of the DOA
estimation errors due to noise plus interference follows
immediately from [14]. To include the e�ect of model-
ing errors, we assume the data were actually generated
according to

x(t) =
�
A(�k) + ~A(�k)

�
bk sk(t) + j(t) ; (12)

where ~A(�k) denotes a zero-mean unstructured error
term. The following model is adopted from [16]

E [~a(�kl)~a
�(�km)] = �lm	 (13)

E
�
~a(�kl)~a

T (�km)
�

= 0 : (14)



The direction-dependent covariance terms are collected
into the matrix

� = f�lmg
dk

l;m=1
(15)

The following result gives an approximate expression
for the covariance matrix of the estimation error. The
proof follows essentially [17] and [14]. The details will
be presented elsewhere.

Theorem 1 Assume that the SER is low, so that the
e�ects of signal estimation errors can be neglected. Fur-
ther, assume that j(t) is circularly symmetric (not nec-
essarily Gaussian) with covariance matrix Q. Then,
up to �rst order in 1=N and f�gii, the mean square
error (MSE) matrix of the DOA estimate (9){(10) is
given by

E
h
(�̂k � �k)(�̂k � �k)

T

i
� H�1(H rss=N + ~H)H�1 ;

(16)
where

H = 2r2
ss
Re(BD� ~�DB�) (17)

~H = 2r4
ss
b
�

k
�Tbk Re(BD

� ~�	 ~�DB�) (18)

B = diagf�k1; : : : ; �kdkg (19)

~� = Q
�1 �Q�1

A(A�

Q
�1
A)�1A�

Q
�1 (20)

D = [@a(�k1)=@�k1; : : : ; @a(�kdk )=@�kdk ] : (21)

It should be emphasized that the above result does
not rely on any assumption regarding the PDFs of j(t)

and ~A. Further, the assumption that j(t) is circularly
symmetric is made for simplicity only. In the case of
binary phase shift keying (BPSK) signals this assump-
tion is violated. The algorithm should then be applied
to a real data vector, formed by stacking the real and
imaginary parts of x(t). The array response vectors
a(�) must be similarly modi�ed. The formula for the
MSE matrix given above still holds, but the 2Re(�) in
the de�nitions of H and ~H should be dropped.

As a �nal remark we note that the above result is
given for a �xed \scattering vector" bk. In a fading sce-
nario, bk is usually modeled as random. The di�erent
matrices involved in the DOA MSE expression should
then be averaged also over the fading parameters.

4. EXAMPLE

As a measure of the sensitivity of the MSE expres-
sion to the assumption of perfectly estimated signals,
we choose to consider an extremely di�cult scenario
involving two mobiles, each subject to a coherent re-

ection. The �rst signal is the SOI (signal of interest),
and it arrives at the m = 8 element standard ULA
(uniform linear array) from the DOAs �1 = [80�; 88�]T

relative the end�re of the array. The amplitudes are
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Figure 1: Theoretical and empirical RMS error for the
source at 80� versus the variance of the array response
errors.

b1 = [1; 0:5]T , corresponding to signal-to-noise ratios of
0 dB and -3 dB respectively. The corresponding param-
eters for the interfering signal are �2 = [100�; 92�]T and
b2 = [1; 0:5]T . Hence, the separation between the di-
rect and re
ected path of the SOI is approximately one
Rayleigh beamwidth, whereas the two re
ected paths
are within 0.5 beamwidths. The signal constellation is
quadrature phase shift keying (QPSK) with rss = 1,
and the background noise is temporally white N (0; I).
The task is to estimate the DOAs �1 based on a batch
of N = 200 symbols. The array response is subject to a
Gaussian perturbation with 	 = I and � = � I, where
� is varied from 0 to 0.01 (i.e., up to 10% errors on the
individual components of a(�)).

The SOI is �rst estimated using the DWILSP (de-
coupled weighted iterative least squares with projec-
tion) algorithm [8], and using a 10 symbol periods long
training sequence. In this severe scenario, an SER of
approximately 0.5% is obtained. The proposed algo-
rithm is then applied, and the RMS DOA error is cal-
culated from 1024 independent trials. In � 0:2% of
the trials, the DWILSP algorithm failed to capture
the SOI, and these outliers were removed when com-
puting the RMS error. As a reference, the weighted
subspace �tting (WSF) algorithm [18] was applied, as-
suming

P
dk = 4 signals. The WSF algorithm yielded

DOA errors larger than 10� in 13%� 24% of the trials
(depending on �), and these were also removed when
computing the RMS error. The results for �11 are dis-
played in Figure 1, whereas Figure 2 shows the results
for �12. The results for the proposed algorithm are
labeled Dec (Decoupled DOA estimator) in the plots.
Despite the relatively large SER, the agreement be-
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Figure 2: Theoretical and empirical RMS error for the
source at 88� versus the variance of the array response
errors.

tween the theoretical and empirical RMS errors is sat-
isfactory. A standard DOA algorithm which does not
make use of estimated signals is clearly not useful in
this di�cult scenario.

5. CONCLUSIONS

A decoupled algorithm for DOA estimation based on
preliminary signal waveform estimates has been pro-
posed. The MSE matrix of the DOA estimates was
derived, assuming small errors due to �nite sample ef-
fects and array response errors. The e�ects of erro-
neous signal estimates were shown to be negligible. A
computer simulation of a di�cult scenario with closely
spaced DOAs and multipath indicated that the theoret-
ical MSE expression accurately predicts the empirical
performance with symbol error rates as large as 0.5%
and array perturbations up to 10%.
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