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ABSTRACT

This work describes an algorithm called the con-
trol circuit encoding (CCE) algorithm that is e�ec-
tive for the remote calibration of anNe element ac-
tive phased array antenna. The algorithm involves
transmission of orthogonal encoded signals. CCE
is ideally suited for analog beamformers as it re-
quires no additional encoding hardware. The CCE
method encodes phased array elemental signals us-
ing a Hadamard matrix to control the switching
of intrinsic phase shifter delay circuits. The CCE
algorithm can reduce the average measurement in-
tegration times for the complete set of calibration
parameters by � Ne relative to the corresponding
values for single-element calibration procedures.

I. INTRODUCTION

This work describes an algorithm called the con-
trol circuit encoding (CCE) algorithm that uses
time multiplexed orthogonal encoded signals to re-
motely calibrate transmitting and/or receiving ac-
tive phased array systems [1,2]. The CCE calibra-
tion technique has been implemented and exper-
imentally validated with a L-band active phased
array testbed developed at the University of Texas
at Austin [3].

Active phased array systems belong to the class
of smart antenna systems that possess the abil-
ity to perform programmable changes of the am-
plitude and phase of the elemental phased array
signals in order to accommodate di�erent beam-
forming scenarios. The applications featured in
this work relate to future generation geostation-
ary (GEO) communication satellite systems that
will deploy analog beamforming active phased ar-
ray transmitting antennas rather than present day
state-of-the-art reector antennas. Extensions of
the calibration algorithms to receiving and digital
beamforming systems are straightforward.

In an analog phased array transmitting antenna

with a p bit beamformer, there are p independent
delay circuits that can be switched into the ele-
mental electrical path to ideally provide 2p quan-
tized phase levels corresponding to phase shifts of
2�m=2p for m = 0; 1; : : : ; 2p � 1. The gain and
phase (complex gain) of the coherent elemental
signals at the receiver is a function of the com-
plex gain of the phase shifter delay circuits, the
power ampli�er, and the transmission path to the
receiver. A calibration system must be capable of
accurately measuring the complex gains associated
with all of the Nep delay circuits as well as both
the relative gains and phases associated with the
straight through path to the receiver with no delay
circuits switched in.
Ideally, remote on-line calibration should be per-

formed with minimal additional remote hardware;
no error other than possible unavoidable propa-
gation and/or receiver noise; and maximized ef-

fective SNR1 (ESNR) per measurement in order
to minimize the required signal measurement inte-
gration times. This is important in satellite appli-
cations as reliable calibration measurements have
to be performed in time window short enough that
the parameters can be treated as being stationary.
There is virtually no known published literature

describing practicable remote calibration proce-
dures that can measure the relative ground truth
of the full set of elemental complex gains for an
Ne element array. The suggested methods[4] are
predominantly variations on the theme of coherent
detection of a single element (SE) under test while
all the other elements are turned o�.
The SE methods are conceptually simple, but

unfortunately have fundamental problems that
make their usefulness questionable for the satel-
lite mission calibration requirements. The �rst
problem deals with the necessity of implementing
a multi-pole microwave switch at the front end of
the elemental electrical path for the purpose of di-

1The ESNR is de�ned as the ratio of the square of the mean

to the variance of the parameter estimate.



recting the calibration signals to a single element
at a time. This switch must be implemented in a
manner that the relative complex gains (insertion
phase) of the straight-through paths for all the el-
ements are not altered by the switching process.
The second problem arises from the fact that the
SE procedures are relatively low ESNR calibra-
tion procedures, which translates into relatively
long measurement integration times. At practica-
ble phased array satellite link budget power levels,
the integration times required to extract the cal-
ibration data for the SE procedures could be too
long to satisfy the quasi-stationarity time window
criteria referred to above.
The ESNR can be substantially enhanced by

using N � Ne coherent transmission of orthog-
onal transform encoded signals from Ne elements
of the array. This procedure enhances the ESNR
by a factor � N over single-element transmission
because all elements are transmitting simultane-
ously. The encoding and decoding provide a vehi-
cle for extracting the parameters of the individual
elemental signals.
The CCE achieves the above mentioned ESNR

enhancement by using controlled switching of the
delay phase control circuits themselves to e�ec-
tively generate a perfect orthogonal transform en-
coding of the signal vectors, even though the con-
trol circuits may be imperfect - no additional en-
coding hardware is required. The switching is dic-
tated by matrix elements of an N �N Hadamard
matrix. The coherent signals are decoded with the
inverse of the same Hadamard matrix used in the
control circuit encoding.
Let fs(n; i)g represent the individual coherent

straight-through-path signals that have been re-
ceived at a single earth station receiver, demodu-
lated, coherently detected, and sampled at times
ti. The algorithmic operations always involve co-
herent signals that are sampled at the same time
point in their respective coherent bursts. This al-
lows us to simplify the nomenclature by suppress-
ing the sampling index i with the understanding
that all operations refer to the same sampled time
points. Accordingly, we use the notation,

S = [s(1); s(2); : : : ; s(N)]T ; (1)

to represent the received, demodulated, sampled
signal vector at the receiver when all the elements
are simultaneously transmitting their straight-
through-path signals.
The calibration process is based on the following

beamformer model. Calibration signal powers are
assumed to be in the linear regime with respect to

the beamformer such that the e�ect of switching
in the �th delay circuit of nth array element with
complex gain d�(n) imposes a complex gain,

x(n) �! d�(n) �! d�(n)x(n) (2)

on the input elemental signal x(n). The e�ect of
switching in multiple circuits generates the prod-
uct of the complex gains,

x(n)�! d�(n) �! d�(n) �! d�(n)d�(n)x(n):

(3)
This model implicitly assumes narrow band sig-
nals.
The delay circuits corresponding to the di�erent

bits can be conveniently represented as a diagonal
matrix, d� = diag[d�(1); : : : ; d�(N)]:
Conceivably, the calibration parameters of in-

terest could be extracted by coherently detecting
the complex beam pattern signals at Ne di�er-

ent ground stations located at spatial points f ~Rig.

The received signals, fA( ~Ri)g, are generated from
the sum of the complex weighted elemental sig-

nals , fsn( ~Ri)g, at A( ~Ri) = Ki

P
n
ansn( ~Ri): The

sampling points would have to be selected to pro-
vide Ne linearly independent simultaneous equa-
tions. In principle these equations can be solved
for the an's. In practice this procedure is not feasi-

ble as the di�erent sampling point positions f ~Rig
and the relative values of the di�erent complex
propagation constants fKig have to be known pre-
cisely. Orthogonal transform coding of the elemen-
tal signals provides a dramatic simpli�cation as all
the encoded interference patterns are sampled at
a single receiver point. The orthogonal transform
assures that the simultaneous equations are lin-
early independent (invertible). As there is only
one propagation constant K, its value need not be
known to determine the relative elemental com-
plex gains. Also, in the far �eld, the parameters
of interest are obtained with no knowledge of the
distance to the single receiver point.

II. THE CCE ALGORITHM

The CCE algorithm encodes coherent signals
from the elements of an analog beamformed
phased array system using controlled switching of
the phase delay circuits. In general, CCE switch-
ing is dictated by matrix elements of an N � N
bipolar invertible matrix. The class of Hadamard
matrices are optimal for this application as they
are the only bipolar matrices that satisfy the min-
imum variance optimality criterion[1].



The overall CCE process requires two sets of
transmissions. The �rst set of transmissions uses
H to control the switching. The second set of
transmissions uses �H to control the switching.
The di�erence of the two signal vectors associated
with the two transmissions is proportional to the
bipolar matrix H.
The �rst pair of encoded coherent signals

is based on CCE with the �th delay cir-
cuit, with all other delay circuits switched out.
These received transmissions are conveniently ex-
pressed as vectors YF

�0;Y
R

�0, with components,

fyF
�0(m); yR

�0(m)g. The zero subscript on these
vectors and their components reects the fact that
all delay circuits other than the �th are switched
out. Here N bursts of coherent encoded signals
corresponding to the N components of these vec-
tors are transmitted and received for each calibra-
tion measurement. Themth received transmission
of the �rst pair of CCE signals is represented by,

yF
�0(m) =

NX
n=1

DF

�
(m;n)s(n);

yR
�0(m) =

NX
n=1

DR

�
(m;n)s(n): (4)

The encoding coe�cients DF

�
(m;n); DR

�
(m;n) are

dictated by the status of the delay circuits that are
switched according to rules, referred to herein as
Hadamard control rules, based upon the matrix
elements of an Nth order Hadamard matrix:

D
F
� (m;n) =

8><
>:

+1 �th circ, nth elem open
if H(m;n) = +1

d�(n) �th circ, nth elem closed
if H(m;n) = �1

D
F
� (m;n) =

8><
>:

+1 �th circ, nth elem open
if H(m;n) = �1

d�(n) �th circ, nth elem closed
if H(m;n) = +1

(5)

The di�erences of the encoding matrices are rep-
resented in component and matrix form as,

DF

�
(m;n)�DR

�
(m;n) = H(m;n)(1� d�(n));

D
F

�
�DR

�
= H(I� d

�
): (6)

Take the di�erence of received signal vectors
Y

F

�0;Y
R

�0 and decode by premultiplying by the in-
verse of the same Hadamard matrix that was used
in the control switching at the remote site. In the

absence of noise, the decoded vector Z�0 is ob-
tained,

Z�0
def
= H

�1(YF

�0 �Y
R

�0)

= H
�1(DF

�
�DR

�
)S = (I� d

�
)S: (7)

The second transmission pair corresponds to CCE
again with the �th delay circuit, while an addi-
tional delay circuit, say the �th, is permanently
switched in on all of the elements. Here,

yF;R
��

(m) =
NX
n=1

DF;R

�
(m;n)d�(n)s(n): (8)

The resulting decoded signals in vector form are,

Z��
def
= H

�1(YF

��
�YR

��
) = (I� d

�
)d�S: (9)

The N complex gains, fd�(n)g are extracted
from these decoded signals by taking the ratio

of the decoded vector components,
n
d�(n) =

[z��(n)]=[z�0(n)]
o
. Repeating the above process

for all of the � 6= � delay circuits determines the
subset of N(p� 1) complex gains, fd�(n)g.
The N values of fd�(n)g have yet to be de-

termined. These are determined by repeating
the procedure described above with the �th cir-
cuit permanently switched in on all of the el-
ements, while any other circuit is used for the
CCE. For example, if the � 6= �th delay circuit is
used in encoding, the fd�(n)g's can be determined
from, d�(n) = [z��(n)]=[z�0(n)]. Now that all the
fd�(n)g are known, the straight through signals,
fs(n)g, are determined from, s(n) = [z�0(n)]=[1�
d�(n)]. Hence the complete data set of Np delay
circuit complex gains plus the N straight through
signals are obtained with N(p + 2) CCE paired
transmissions.

III. VARIANCE OF PARAMETER

ESTIMATES

The calibration algorithms considered herein de-
pend on coherent detection of demodulated sig-
nals. The classical additive white Gaussian noise
(AWGN) model that is typically used in perfor-
mance analyses of statistical estimation problems
is not appropriate for coherent detection analy-
ses due to inherent analytical divergences. These
di�culties are resolved herein by choosing a noise
model that is both physically more appropriate for
the coherent detection process, and is not ham-
pered by analytical divergences. In the coher-
ent detection process the demodulated signals are
both bandlimited and energy limited. Our co-
herent detection systems noise model is referred



to as additive truncated Gaussian noise (ATGN).
ATGN is represented by independent amplitude
and phase random variables with probability den-
sity functions (pdf's) characterized respectively by
a truncated Rayleigh amplitude distribution and
a uniform phase distribution. In our simulations,
the ATGN noise energy is truncated at �Emax;
with � = 0:9, corresponding to 90% of the maxi-
mum deterministic signal energy.
In our analysis we have also shown that the ex-

pressions for the variances of the elemental com-
plex gain estimates have asymptotic expansions
that are valid in the SNR regime commensurate
with typical satellite link budget power levels [1].
The asymptotic forms of the SE, and CCE vari-
ances, with Emax representing the maximum al-
lowable single element power are given by,

V
SE(d�(k)) �

�2

Emax
+

���d�(k)��2+ �2

Emax

� McX
m=1

m!

�
�2

Emax

�m
;

V
CCE(d�(k) �

2�2

NEmax j1�d� (k)j2
+ (10)�

jd�(k)j
2 + 2�2

NEmax j1�d� (k)j2

�PMc

m=1
m !

"
2�2

NEmax j1�d� (k)j2

#m

These asymptotic series have to be truncated at
an integral order Mc < fEmax=�

2g in order to
maintain local convergence within the errors indi-
cated above. A cuto� value of Mc � 9 associated
with a 10dB single element SNR is quite e�ective
for practicable system parameters. If Mc were ex-
tended to values >> Emax=�

2, the series would
ultimately diverge. We note that the expansion
parameter for the CCE variance has a factor of
j1� d�(k)j

2 in the denominator. As

j1� d�(k)j
2 =

8<
:

4 for � phase shift
2 for �=2 phase shift
0:04 for �=16 phase shift

;

(11)
it is bene�cial to perform the CCE encoding with
the largest possible phase shifter circuit.

IV. COMPARISONS: THEORY

AND SIMULATIONS

We now compare the asymptotic forms of the
theoretical estimation variances for the SE and
CCE algorithms given by Eq. (10), with MC sim-
ulations. For these examples, the errors induced
by the truncation of the asymptotic expansions
are so small that we truncated the expansions at
their 9th order expansion terms. Fig. 1 illustrates
these comparative results. Hadamard control ma-
trices, as required, are used in the CCE simula-
tions. For these simulations, we have used a value
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Figure 1: Theory vs. MC simulation of the e�ective esti-
mation SNR (ESNR) for the estimate of the complex gain
of the �=2 phase shift circuit.

of the single element SNR which is de�ned as the
ratio of received single element power to the re-
ceiver noise power, Emax=�

2 of 10 dB. Both the
theoretical and simulation results given in the �g-
ure correspond to the ESNR for the complex gain
estimates of the �=2 phase shifter delay circuit.
The Monte Carlo (MC) simulation and theoreti-
cal results for the single elements ESNR's of the
�=2 phase shifter are 6.121 and 6.120 dB respec-
tively. These results illustrate the dramatic in-
crease in the ESNR's that can be obtained using
the orthogonal codes for control codes in the CCE
process.

REFERENCES

1. S. D. Silverstein, \Application of Orthogonal Codes to
the Calibration of Active Phased Array Antennas for
Communication Satellites," Special Issue of IEEE
Transactions on Signal Processing for Advanced
Communications, January, 1997.

2. S. D. Silverstein, "Algorithms for Remote Calibration
of Active Phased Array Antennas for Communication
Satellites, Proceedings of the 30th Asilomar Conference on
Signals, Systems, and Computers, November 1996.

3. J. M. Ashe, W. Yang, T. Shen, G. Xu, and
S. D. Silverstein, \Experimental Study of Remote
Calibration Algorithms for Active Phased Array
Transmitters," Proceedings of the 30th Asilomar
Conference on Signals, Systems, and Computers,
November 1996.

4. J. M. Howell, \Phased Array Alignment and
Calibration Techniques," Proceedings of The Workshop on
Testing Phased Arrays And Diagnostics, Organized by the
AMTA in conjunction with the IEEE Antennas and
Propagation International Symposium, San Jose,
California, June 30, 1989.


