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ABSTRACT

At ICASSP '96, we presented an algorithm that estimates
the topology of a hidden Markov model (HMM) given a set
of time series data. The algorithm iteratively prunes state
transitions from a large general HMM topology and selects
a topology based on a likelihood criterion and a heuristic
evaluation of complexity. In this paper, we apply the al-
gorithm to estimate the dynamic structure of human body
motion data from a repetitive lifting task. The estimated
topology for low back pain patients was di�erent from the
topology for a control subject group. The body motions
of patients tend not to change over the task, but the body
motions of control subjects change systematically.

1. INTRODUCTION

We present the application of our HMM topology estima-
tor [1] to describe the dynamic structure of correlated mul-
tivariate time series data from a physical process. Speci�-
cally, we characterize the dynamic structure of body motion
data obtained during a repetitive, dynamic lifting task. The
task was devised to objectively evaluate the functional ca-
pacity of patients with low back pain [2]. Preliminary study
of the repetitive lifting task has suggested that systematic
changes in body motion can occur over the course of the
task and that the changes are di�erent for control subjects
than for patients.
Patients that undergo treatment for low back pain vary

widely in their responses to the treatment. A goal of func-
tional capacity testing is to explain this variability by identi-
fying di�erences among patients before treatment that pre-
dict treatment e�ectiveness or by identifying di�erences af-
ter treatment that explain why treatment was or was not
e�ective.
Identifying di�erences in lift sequences between groups

of subjects is a di�cult problem for which traditional sta-
tistical methods (e.g. linear discriminant analysis of time-
averaged data, cluster analytic methods) are of limited util-
ity [3,4]. By applying our HMM topology estimation algo-
rithm, we can group subjects based on the dynamic behav-
ior of their repetitive lifting data. We applied our topology
estimation algorithm to functional capacity data obtained
from control subjects and from patients before and after a
25-day treatment protocol [2]. One topology was estimated
for lift sequences performed by control subjects, a second
topology for patients before treatment, and a third topology
for patients after treatment. In the HMM representation,
the states represent di�erent types of lifts. For each popula-
tion, we used the set of possible paths through the estimated
topology to identify subgroups in the population. That is,

each subject was assigned to a population subgroup based
on the path (i.e. state sequence) used by that subject's lift
sequence data through the population model.

2. ALGORITHM APPLICATION

In this application, three features were used to describe
body motion during each lift in a lift sequence. These fea-
tures are de�ned in terms of body angles which change as
a subject performs a lift. Body angles are de�ned by the
locations of the shoulder, hip, knee, and ankle. The hip
angle is de�ned by the shoulder-hip-knee locations and the
knee angle is de�ned by the hip-knee-ankle locations. The
�rst feature mindif is the di�erence between the starting
hip angle and the starting knee angle, where each angle is at
its minimum value as the subject begins the lift. The sec-
ond feature todif is the di�erence between the midpoints
of the hip and knee angles, where the midpoint is de�ned
as the time required for the angle to reach a value half-way
between the angle's maximum and minimum values. The
third feature trdif is the di�erence between the risetimes
of the hip and knee angles, where the risetime is de�ned in
terms of the time required for the angle to change from the
minimum to the maximum value [3].
The control data set consisted of 62 lift sequences, one per

subject, with a total of 4136 lifts. The pre-treatment pa-
tient data set consisted of 101 lift sequences (i.e. subjects)
totaling 2588 lifts and the post-treatment patient data set
contained 73 lift sequences totaling 2417 lifts. The three-
dimensional feature space spanned by the union of the three
data sets was vector quantized into 32 partitions. We used
20 iterations of the K-means algorithm (with K=32) to train
the codebook of our full-search vector quantizer (VQ). The
distortion measure for our VQ was the mean-square error.
Initial code vectors for training the full-search codebook
were obtained by a non-uniform binary-search VQ. For each
partitioning (K=2) in the binary-search VQ, we chose ini-
tial code vectors by computing the centroids of two clusters
separated by the hyperplane orthogonal to the dimension
with the largest variance. Before vector quantization, each
feature was normalized by its range.
For each data set, a topology estimate was obtained us-

ing the algorithm as described in [1] with the enhancements
detailed below. None of the data sets were large enough to
start the pruning algorithm with one state for each observa-
tion symbol (i.e. 32 states), so we were forced to choose an
initial number of states which was much smaller than the
number of observation symbols. We examined the feature
space spanned by each data set and observed that the data
are essentially a continuum within each population. This
implies that there is signi�cant overlap in the states of the
actual physical (i.e. lift sequence) process. When the states
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Figure 1. Plot of Normalized Pr(Oj�) vs. Pruning
Iteration for Control Group (\elbow" indicated by
arrow)
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Figure 2. 3-State HMM Topology Estimate for
Control Group
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Figure 3. 3-State HMMTopology Estimate for both
Pre-Treatment and Post-Treatment Patient Groups

of a process overlap in the feature space, decreasing the
number of states in the model of the process decreases the
model likelihood. For this reason, since our algorithm eval-
uates topologies based on likelihood, the number of states in
the estimated topology will generally be the same as in the
starting topology if the actual process states overlap each
other. We estimated topologies for each data set starting
with 2, 3, 4, and 5 states. The training of the starting topol-
ogy was initialized by a K-means clustering of the data set
into 2, 3, 4, or 5 partitions. As described below, when we
started the algorithm with 4 and 5 states, the population
subgroups that we identi�ed by state sequence were consis-
tent with those we obtained by starting the algorithm with
3 states. For this paper, we present the results obtained
starting with 3 states so that the subgroups identi�ed by
state sequence would be large enough to allow for a mean-
ingful analysis of subgroup di�erences.
As described in [1], our algorithm selects a topology es-

timate from the set of topologies generated over the prun-
ing iterations. The topology chosen is the simplest topol-
ogy before a substantial decrease in Pr(Oj�). That is, the
topology estimate is located at an "elbow" in the Pr(Oj�)
trajectory. The "elbow" location is determined by heuristic
evaluation. Figure 1 shows Pr(Oj�) (normalized by data
length) over the pruning iterations (starting with 3 states)
for the control group. The likelihood of the starting topol-
ogy is shown at pruning iteration 0 in the Pr(Oj�) plot.
The "elbow" in the Pr(Oj�) trajectory in Figure 1 was de-
termined to be at iteration 6. The Pr(Oj�) plots for the
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Figure 4. 4-State HMM Topology Estimate for
Control Group
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Figure 5. 5-State HMM Topology Estimate for
Control Group
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Figure 6. 4-State HMMTopology Estimate for both
Pre-Treatment and Post-Treatment Patient Groups
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Figure 7. 5-State HMMTopology Estimate for both
Pre-Treatment and Post-Treatment Patient Groups

pre-treatment and post-treatment patient groups had well-
de�ned \elbows" as in Figure 1 with the \elbow" being
reached in 4 and 3 pruning iterations, respectively.
The 3-state topology estimate for the control group is

shown in Figure 2. The estimated topology for the pre-
treatment patient group is shown in Figure 3. A topology
identical to Figure 3 was estimated for the post-treatment
patient group, though the model parameters were di�erent.
The asterisks in Figures 2 and 3 indicate non-zero initial
state probabilities.
The topology estimates for all three data sets indicate a

temporal structure. All control subjects started in state 1
and some remained in that state throughout the task. The
other subjects had one transition to one of the two other
states. For both the pre-treatment and post-treatment pa-
tient groups, the estimated topologies included one isolated
state and a 2-state temporal submodel. Some patients used
only the isolated state, others used only the �rst state of the
2-state temporal submodel, and the rest used both states
of the temporal submodel.
For each data set, when we started the pruning algorithm

with 4 and 5 states, our topology estimates had 4 and 5
states, respectively. For all three data sets, the estimated
topologies we obtained when we started the algorithm with
3 states were submodels of the topology estimates when we
started with 4 or 5 states.
Figures 4 and 5 show the 4- and 5-state topologies for the

control group. With few exceptions, the subjects who used
the transition between states 1 and 0 in the 3-state topology
did likewise in the 4- and 5-state models. Most of the lift
sequences that remained in state 1 in the 3-state model did
so in the 4- and 5-state models. Also, the subjects who used
states 2, 3, or 4 in the 5-state model used states 2 or 3 in
the 4-state model and state 2 in the 3-state model.
Figures 6 and 7 show the 4- and 5-state topologies for the

pre-treatment patient group. As with the 3-state topology
estimates, the 4- and 5-state topology estimates for pre-



Table 1. State Centroids for Control Model

State 0 State 1 State 2
mindif Mean -31.76 -30.87 -30.64
(degrees) SD 26.03 24.28 23.94
todif Mean -2.01 9.79 11.03
(msec.) SD 58.84 60.43 60.26
trdif Mean -19.86 -18.78 -20.17
(msec.) SD 50.72 44.84 44.34
Lifts Using State 933 1557 1646

Table 2. Pre-Treatment Patient State Centroids

State 0 State 1 State 2
mindif Mean 14.67 19.74 14.68
(degrees) SD 24.06 21.94 25.43
todif Mean 3.47 0.36 -1.47
(msec.) SD 66.61 66.61 75.66
trdif Mean 3.79 4.65 3.77
(msec.) SD 47.56 50.05 52.20
Lifts Using State 878 602 1108

Table 3. Post-Treatment Patient State Centroids

State 0 State 1 State 2
mindif Mean 18.13 12.03 12.01
(degrees) SD 26.03 20.01 23.97
todif Mean 7.52 2.86 7.33
(msec.) SD 46.24 33.48 47.44
trdif Mean -11.93 4.37 -8.05
(msec.) SD 66.09 21.05 54.70
Lifts Using State 681 478 1258

treatment and post-treatment patients were the same. In
general, the subjects that used the state transition in the 3-
state model also did in the 4- and 5-state models (this was
true for both patient groups). By assembling population
subgroups based on state sequence, we were able to deter-
mine how the isolated states in the 4- and 5-state models
were merged in the 3-state model.
Our estimates of dynamic structure can be interpreted

by relating each HMM state to the feature space. To do
this, we compared state centroids to distinguish the types
of body motion represented by the states. Tables 1, 2 and
3 contain the state centroids for the 3-state control, pre-
treatment patient and post-treatment patient models.
The mindif feature is a static parameter not directly re-

lated to the motion of the body during the lift. A large
negative value for the mindif feature indicates that the
starting knee angle is much larger than the starting hip an-
gle, a posture corresponding to a \back lift" (i.e. at the
start of the lifting motion, the subject is bending at the
waist with straight legs). A positive value for the mindif
feature corresponds to a \squatting" posture, where the
subject maintains an upright torso and bends his or her
legs to start the lift. If the value of the mindif feature is
nearly zero, the subject's body is bent at both the waist
and knee. From Tables 1 through 3, the control subjects
perform \back lifts" and the patients perform \squat lifts".
There is little di�erence between the mindif features of the
pre-treatment and post-treatment patient groups.
The todif and trdif features are dynamic parameters

that depend on body motion during the lift. To aid in the
interpretation of the two dynamic parameters, we use the

Table 4. Coordination Indices

Model State 0 State 1 State 2

Control -0.285 -0.207 -0.090
Pre-Treatment Patient -0.173 -0.093 -0.166
Post-Treatment Patient -0.439 -0.100 -0.283

Table 5. Control Subject Subgroups

State Sequence
1 ) 0 All 1 1 ) 2

Number of Subjects 17 17 27
Avg. Number of Lifts 68 69 68

Avg. Weight Lifted (lb.) 73 62 63

Table 6. Pre-Treatment Patient Subgroups

State Sequence
All 0 2 ) 1 All 2

Number of Subjects 38 25 38
Avg. Number of Lifts 23 28 27

Avg. Weight Lifted (lb.) 30 31 29

Table 7. Post-Treatment Patient Subgroups

State Sequence
All 0 2 ) 1 All 2

Number of Subjects 13 24 36
Avg. Number of Lifts 28 46 32

Avg. Weight Lifted (lb.) 38 29 37

todif and trdif features to compute a measure of the coor-
dination of body motion [3]. Our coordination index is the
correlation coe�cient between the two dynamic features,
computed across all lifts in a state. Table 4 lists the co-
ordination indices for each state of the three lift sequence
models (3-state). States with large negative coordination
indices represent uid body motion, while states with small
negative coordination indices represent body motion that
is more deliberate or guarded. Speci�cally, a large negative
coordination index indicates a tendency for the subject's
hip and knees to complete the lift together. Conversely,
with a small negative coordination index, the subject's hip
and knees tend not to complete the lift together [3]. From
Table 4, pre-treatment patients use a lifting motion that is
less coordinated than the controls. The dynamic parame-
ters (and coordination indices) of post-treatment patients
are more like the control group than the pre-treatment pa-
tient group.
Subjects within each group were arranged into subgroups

based on the path they used through the model. Tables 5,
6 and 7 list the number of subjects using each path through
the control, pre-treatment patient and post-treatment pa-
tient models. From Tables 5 through 7, it is clear that
the percentage of control subjects that make a state tran-
sition (72.1%) is larger than for the patients pre-treatment
(24.8%) or post-treatment (32.9%).
All control subjects start their lift sequences in state

1, which represents a moderately-coordinated lifting style.
Controls that show a state transition either move to a
state that is more coordinated (state 0) or less coordinated
(state 2). The controls that transition to state 2 lift the
most weight. Post-treatment patients either transition to a
state with low coordination or remain in a state with rela-



tively high coordination. The post-treatment patients that
use the less-coordinated state perform more lifts but lift
less weight than the other post-treatment patients. These
trends suggest that the amount of work performed by sub-
jects depends on the lift types (i.e. states) used, although
the work performance measures (number of lifts and weight
lifted) were highly variable, and the di�erences between
population subgroups were not statistically signi�cant.

3. DISCUSSION

An obvious conclusion from the topology estimates is that
control subjects were more likely to show a state transi-
tion than patients. In the 3-state model, 72.1% of control
subjects made a state transition as opposed to 24.8% of the
pre-treatment patients and 32.9% of the post-treatment pa-
tients. Comparing the 4- and 5-state models of the control
and patient groups emphasizes the observation that con-
trols use more state transitions than patients. This result
is consistent with previous analyses that used a repeated-
measures analysis of variance model to compare data ob-
tained early in the task with data obtained in the mid-
dle of the task and at the end of the task [4]. This early-
middle-late analysis showed that the body motions of con-
trols changed during the task, while the body motions of
patients tended to be constant.
The treatment received by the patients doesn't change

the dynamic structure of their lifting data. After treat-
ment, patients showed a limited improvement in work per-
formance and a moderate change in the coordination of
their lifting motion, but the treatment protocol does not
seem to increase the patients' tendency to adapt (relax,
become more e�cient, etc.) to the task. It is worth not-
ing that the patients only received 25 days of treatment:
perhaps greater changes would be observed after a longer
treatment protocol. It is also possible that our results have
been inuenced by the patients' willingness to perform the
task.
In conclusion, by applying our HMM topology estima-

tion algorithm we have demonstrated that there are di�er-
ences in dynamic structure between controls and patients
in repetitive lifting data. We have shown that there is
a temporal structure in repetitive lifting data, and that
our estimates of dynamic structure are consistent (simi-
lar topologies are obtained when we start the algorithm
with di�erent numbers of states) and well-de�ned (the \el-
bows" in the plots of Pr(Oj�) are distinct). Lastly, we
have demonstrated how a treatment protocol can be evalu-
ated by arranging control, pre-treatment patient and post-
treatment patient populations into subgroups using our es-
timated topologies. Our results suggest that this approach
to time-series modeling may be helpful in characterizing
functional capacity testing data.

4. IMPROVEMENTS TO THE ALGORITHM

We report several changes to the algorithm as described in
[1]. One modi�cation concerns the starting topology for
the algorithm. The starting topology described in [1] has
a state for each observation symbol. However, if there is a
limited amount of data available and the data are �nely-
quantized (i.e. VQ into many observation symbols), then
there may not be enough data to train a topology with
one state for each observation symbol. In this case, we
start the algorithm with a topology that has fewer states,
with multiple observation symbols per state. This starting
topology is ergodic with a fully-populated state transition

matrix as described in [1]. Before the starting topology
is trained, the states are initialized based on a clustering
scheme.
Another change to the algorithm involves the method

for removing a state from the topology. The algorithm as
described in [1] performed a separate state-removal itera-
tion to eliminate a state from the topology after its self-
transition was removed by a pruning iteration. In this ap-
proach, the topology resulting from the state-removal itera-
tion was not evaluated by the pruning iteration. Thus, the
Pr(Oj�) for the state-removed topology might be smaller
than some of the candidate topologies in the pruning it-
eration that removed the self-transition. For this reason,
we changed the algorithm to perform state removal within
the pruning iteration. A pruning iteration now trains a
candidate topology for each state that eliminates the state
entirely.
The algorithm presented in [1] eliminated a state from the

topology by pruning all transitions into and out of that state
and redistributing state transition probabilities to establish
direct transitions between states that were previously con-
nected via the eliminated state. This approach results in a
suboptimal initialization of the HMM parameters for train-
ing the state-eliminated topology. We have modi�ed the al-
gorithm to eliminate states by merging pairs of states rather
than pruning single states. The set of candidate topologies
evaluated by a pruning iteration now includes (in addition
to topologies that remove single state transitions) topolo-
gies that merge all possible pairs of states. The primary
advantage to merging states as opposed to pruning states
is that the counts (e.g. number of times in state, number
of times a transition is used, etc.) can be used to initial-
ize the HMM parameters for training the state-eliminated
topology.
Also, the algorithm has been modi�ed to train each topol-

ogy to the convergence of Pr(Oj�). Instead of training by
a �xed number (ten) of iterations of Baum-Welch (B-W)
reestimation [1], each topology is trained until Pr(Oj�t) <
1:5Pr(Oj�t�1), where �t is the HMM after t iterations of
B-W reestimation. The rate at which Pr(Oj�) converges
can vary considerably over di�erent topologies. That is,
even though topology �1 may have a larger Pr(Oj�) than
topology �2 when both have been trained to convergence,
Pr(Oj�2) may be larger that Pr(Oj�1) after each has been
trained by ten B-W iterations. We implemented a conver-
gence criterion to ensure that when the algorithm evaluates
candidate topologies during a pruning iteration, topology
selection is not a�ected by the convergence rate of Pr(Oj�).
Our convergence criterion was chosen to achieve a balance
between algorithm performance and computational cost.
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