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ABSTRACT

We have developed a low power analog VLSI chip for real
time signal processing motivated by the principles of hu-
man auditory system. A analog cochlear �lter-bank (which
is implemented on the chip) decomposes the input audio
signal into several frequency bands that have almost equal
bandwidth on a log scale. This step is thus similar to com-
puting the wavelet transform. The chip then computes sig-
nal energies and zero crossing time intervals of frequency
components in a cochlear �lter bank. The chip is intended
to work as a front-end of a speech recognition system. We
include experimental results on a VLSI implementation of
the auditory front-end. We present speech recognition re-
sult on the TI-DIGITS database obtained from computer
simulations which model the functionality of the feature
extraction VLSI hardware. We use Hidden Markov Models
(HMM) in combination with Linear Discriminant Analysis
(LDA) for the recognizer design.

1. INTRODUCTION

The performance of today's state of the art speech recogni-
tion systems, that mainly use LPC or cepstral speech fea-
tures, markedly degrades under adverse operating condi-
tions such as cafeteria noise low-bandwidth telephone chan-
nels. On the other hand, the human capability of under-
standing speech remains almost una�ected under such cir-
cumstances. It has been argued that part of this robustness
can be attributed to signal representation in early stages
of the auditory periphery [1, 2, 3]. Therefore, by imple-
menting feature extraction algorithms based on physiolog-
ical studies of the auditory periphery in humans and pri-
mate vertebrates, we expect to achieve signi�cant improve-
ment in noise robustness. Also, the auditory periphery con-
sumes only a tiny fraction of the energy dissipated when the
same algorithms are implemented in standard DSP hard-
ware. Therefore, it is conceivable that dedicated hardware
emulating the structure of the auditory periphery is more
suitable for portable devices where low power dissipation is
important.
This paper presents an analog VLSI [4] architecture for

auditory based feature extraction, which is designed to serve
as the front-end to a speech recognition system. The ex-
tracted features are the signal energies and zero crossing
time intervals obtained on the frequency decomposed out-
put channels in a cochlear �lter bank [5, 6]. The combined
information in these two signals does not cause any loss of
information [7, 8], and it is physiologically plausible that
this information is carried by the �ring patterns in the au-
ditory nerve. The extracted features are made available at
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Figure 1. Information coding by zero-crossing in-
tervals and period-energy.

the output of the chip through an asynchronous communi-
cation protocol similar to that in [9]. The developed system
is intended as a versatile tool for use by neuroscientists for
auditory modeling, as well as a demonstration vehicle to-
wards a low-power, real-time, robust speech recognizer for
portable applications.
The auditory processing and its VLSI implementation

is described in Section 2. Some experimental results on
the fabricated chip are presented in section 3. Section 4.
presents recognition results on the TI-DIGITS database ob-
tained from a software simulation using linear discriminant
analysis to improve the auditory representation [10], and
HMMs.

2. AUDITORY MODELING

The representation of transient signals by zero-crossings of
their wavelet transforms has been investigated by S. Mallat.
He pointed out that this representation is well adapted for
solving pattern recognition problems [8]. From a physiolog-
ical standpoint, the discrete action potentials generated by
the inner hair cell in response to auditory stimuli can be
considered as zero crossing events as well [11]. Moreover,
zero-crossing intervals contain much information about the
dominant frequency in the signal [12].
The implemented system emulating the auditory periph-

ery includes a model of frequency decomposition in the basi-
lar membrane of the cochlea, and a model of feature extrac-
tion (through zero crossings) in the inner hair cells of the
cochlea. Subsequent processing in the auditory periphery
is still unexplored terrain for physiological research, and in
our implementation is left to be performed o�-chip for op-
timal exibility.
In our implementation, the basilar membrane consists

of a bank of bandpass-shaped �lters, with center frequen-
cies spaced uniformly on a logarithmic scale from 100Hz to
8000Hz [13, 6]. The features extracted by the inner-hair
cell circuitry are zero-crossing time intervals [14] and sig-
nal energies, for all of the basilar membrane �lter outputs.
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Figure 2. Block diagram of the VLSI architecture
for the electronic cochlea.

We need the energy feature to account for signal intensity
which in the auditory system is encoded by the number of
�bers �ring.
Figure 1 illustrates the features extracted from the basi-

lar membrane output (cochlea channels). We de�ne TZC
as the time interval between two consecutive upward zero
crossing of the AC component of the signal and the `energy'
as the integral over the recti�ed AC component of the signal
within the period TZC .

2.1. VLSI Architecture

Figure 2 shows a block diagram of the analog VLSI chip.
The basilar membrane is implemented as a �lter-bank struc-
ture, each segment of which consists of multiple linear �rst
order sections followed by two linear bandpass �lter sec-
tions [6]. The frequency decomposed time signals from the
basilar membrane are processed locally. We employ a bi-
nary charge pump [15], to establish an adaptive elimina-
tion of signal o�sets and inherent 1=f noise, through high
pass �ltering with channel speci�c time constants. A com-
parator detects upward zero crossing and provides control
signals for circuitry computing TZC . The energy feature is
obtained from integrating the full-wave recti�cation of the
signal on a capacitor.

2.2. Asynchronous data acquisition

The outputs from every channel are time-division-
multiplexed to the chip output, using an asynchronous pro-
tocol which is most e�cient when dealing with communica-
tion problems involving a bandwidth-limited bus, and bus
requests at arbitrary time and rate. At every zero cross-
ing instant, both the time interval and energy feature are
sampled and held, and a service is requested by setting the
SR-latch. The arbitration logic handles multiple requests at
a time, and shall favor the highest-frequency channel. The
address of the winning channel is encoded and passed to a
delay ip-op (D-FF). The D-FF stores the address of the
channel currently being accessed. This address controls the
multiplexer that routes the channel features to the output
pads of the chip. Once the outputs are sampled and held,
an external reset (RST) pulse is expected. The RST pulse
is multiplexed back to the SR latch of the channel just be-
ing completed. At the falling edge of the RST pulse, the
new address available from the encoder is loaded into the

Figure 3. Analog VLSI chip implementing 15 chan-
nels of level-crossing and intensity auditory feature
extraction, including channel encoding.

D-FF.
The outputs available from the chip are represented by a

list of events. Each event contains the address information,
indicating where the event occurred, TZC, and the energy
for that period.
Apart from the acquisition scheme just lined out, this ar-

chitecture also allows for external multiplexer control. The
bu�er following the D-FF can be disabled and an address
can be applied externally to access one particular channel
at a time.

3. EXPERIMENTAL RESULTS

Figure 3 shows a micro-graph of the 2mm�2mm chip that
has been fabricated through MOSIS using 1.2�m technol-
ogy. Some experiments have been performed to verify chip
functionality. Figure 4 demonstrates the time-interval fea-
ture computation. The lower trace is the BM output signal
of the highest frequency segment in response to a triangular
FM-modulated input signal in the audio range. The upper
trace shows the resulting time-interval feature voltage. Its
time discrete nature and 1/f (hyperbolic) characteristic can
be observed easily. Also note that the magnitude envelope
in the BM output signal in response to di�erent signal fre-
quencies.
The energy feature is extracted every period of the sig-

nal. If the period is held constant, then the amplitude
modulation of the signal will reect in this feature. Fig-
ure 5 illustrates this operation. The BM is supplied with
an AM modulated sinusoidal of constant frequency (upper
most trace). The trace below is the corresponding BM out-
put. The lower two traces are the energy feature and the
time-interval feature, respectively. We observe that signal
energy changes, but due to constant frequency the time-
interval feature remains constant.
The asynchronous communication scheme has also been

tested and found functional.

4. DIGIT RECOGNITION EXPERIMENTS

Practical statistical recognition systems work best with
compact signal representations that contain only the infor-



Figure 4. Interval Feature for FM-modulated In-
put.

Figure 5. Energy and Interval Feature for AM-
modulated Input.

mation that is relevant for the recognition task. We have
used the Interval Histogram (IH) as feature vector. An IH
is generated by creating several bins corresponding to dif-
ferent zero-crossing intervals TZC . For any zero crossing
event, the appropriate bin is chosen depending on the value
of the event's TZC , and �lled with the non-linearly com-
pressed event energy. For the current implementation, we
use cubic root compression. The IH is computed from at
most last twenty crossing events, at a rate of 100 Hz. In ad-
dition, events that have occurred more than forty millisec-
onds prior to IH generation are discarded. This approach is
similar to that of computing EIH [1]. As an alternative, we
may choose the IH generation to be triggered every upward
zero crossing in the lowest frequency channel. The moti-
vation behind this approach is that in a realistic biological
system, there is no reason to believe that feature computa-
tion occurs at uniform intervals. However it seems plausible
that some low frequency events may drive the computation
necessary for recognition. One such possible event is the
zero crossings in low frequency channel, that roughly corre-
spond to the pitch period of the voiced speech signal. The
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Figure 6. System architecture for the use of silicon
cochlea as a pre-processor to a speech recognition
system.

Figure 7. Recognition performance with 20 bin IH
features computed every 10 milliseconds

bins are of equal width on a log-frequency scale, and are
normalized by dividing the energy in each of them by the
total sum of all the energy. The energy is then scaled ade-
quately and added as a separate feature. Figure 6 depicts
the intended recognition system architecture. The analog
VLSI chip serves as the front end. The acquisition system
collects zero crossing intervals as well as the corresponding
energy measure from all channels. The events are stored
in turn to form an event list. Subsequently, a software
module computes interval histograms, which are fed into
a statistical recognizer. For software simulations, the ana-
log VLSI chip and the acquisition system has been replaced
by an equivalent software module. Digit recognition exper-
iments were performed according to Figure 6. A �ve state
single mixture HMM is trained for every digit. Suppose
the feature is n dimensional. At any frame, the C previ-
ous frames, and the C following frames are concatenated to
form a new (2C+1)n dimensional feature. C is de�ned as
the context size. Linear Discriminant Analysis is applied to
the expanded features [16, 17, 10, 18] to reduce the feature
dimensionality.
Figure 7 shows the results of experiments with the IH

features computed every 10 milliseconds. Results are shown
for both training and the test data. The context size C is
indicated in the legend. Recognition accuracy is plotted
against the reduced feature dimension. Our objective here



Figure 8. Recognition performance with 20 bin
IH features computed at every zero crossing of the
lowest frequency channel

is to develop a silicon hardware that can serve as a tools for
research in auditory representations. Once the VLSI hard-
ware is developed, the representation choice would also have
to take into account the robustness of the representation in
presence of device mismatch and temperature variations.
Given the fact that not much e�ort was put into choosing
the right representation to suite the Gaussian models, the
performance appears to be reasonable. When the number of
mixtures is increased to four, the recognition performance
improves further to 98.3%. Experiments with zero-crossing
triggered IH generation (Figure 8) also indicate that fur-
ther research and optimization may be helpful. These re-
sults should be treated as preliminary when compared to
the state of the art systems [19]. We believe that the dif-
ference in performance is due to the fact that our features
are not rich enough, and models are too simple to represent
the data. The performance may potentially be further im-
proved by applying the more general models of LDA [20, 21].
However, the recognizer performance certainly suggests the
applicability of analog VLSI cochlea to auditory based re-
search.

5. CONCLUSION

We have proposed an approach to real-time auditory based
speech recognition using analog VLSI as a front-end feature
extractor. A chip has been designed and the algorithm was
tested on the TI-DIGITS spoken digit database. Simulation
results show that one can obtain encouraging recognition
results while keeping model complexity low.
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