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ABSTRACT

Recent performance enhanced DSP (Digital Signal Proces-
sor) architectures incorporate either datapath add-ons such
as dual-MAC architectures or tailored datapaths such as
Viterbi accelerators. Both strategies strongly influence the
instruction set architecture (ISA). Since common ISAs are
not designed for architectural enhancements, either a com-
plete redesign is required or architectural enhancements
cannot be fully exploited by the ISA.
Taking the GSM Fullrate Vocoder in this paper a structural
approach is presented to how datapath add-ons or tailoriza-
tions can be applied to increase DSP‘s performance. To
efficiently utilize architectural enhancements we propose a
modified VLIW (very long instruction word) ISA, called
TVLIW (tagged VLIW). TVLIW combines both VLIW
performance and DSP codewidth requirements. To demon-
strate the applicability, we applied the TVLIW ISA to a
highly pipelined quadruple-MAC architecture, incorporat-
ing only one dualport RAM and a 26-bit wide instruction
word.

1. INTRODUCTION

The ongoing advances in semiconductor technology are the
enabler for more powerful processors at smaller power con-
sumption. However, shrinking transistor dimensions
strongly influence a processor’s architecture. While
increased number of transistors on a chip can be exploited
by parallel processing, pipelined architectures allow faster
clock rates. Along with this an increasing gap between
memory access time and gate latency can be observed. 
In the development of microprocessor architectures this is
already taken into account, e.g. by implementing supersca-
lar architectures and complex memory hierarchies. 
DSP architectures on the other hand support inherent paral-

lelism, e.g. by allowing concurrent memory accesses and
arithmetic calculations. However, to efficiently support
new DSP algorithms more processing power must be
accomplished by incorporating both parallelism and
pipelining into architecture design while avoiding an
increase in memory bandwidth for supporting low-
power and cost effective designs [1].
Thus, a common strategy is to replicate arithmetic units
or implement tailored datapaths. Both methods strongly
effect the instruction set which ensures DSP’s program-
mability and flexibility. Furthermore, support of both
pipelining and parallelism is mainly determined by the
instruction set. The organization of this instruction set is
referred to as instruction set architecture (ISA). 
To illustrate current strategies for implementing new
datapaths and how they affect the ISA two recent DSP
architectures are chosen: the C54x Lead-DSP by TI [2]
and the DSP1618 by Lucent [3], former AT&T, which
both incorporate Viterbi accelerators.
A tailored add compare select (ACS) datapath was added
to the former C5x architecture by TI. Furthermore, MAC
was separated from ALU. These architectural changes
lead to a complete new instruction set, requiring a new
instruction decoder, and thus a complete redesign of the
processor, yielding the C54x.
Lucent on the other hand improved the DSP1600’s archi-
tecture in two different ways by not changing the ISA
and thus allowing code compatibility. For Viterbi accel-
eration they choose a coprocessor approach which limits
the DSP‘s flexibility. Furthermore, a Bit Manipulation
Unit (BMU) was added to the DSP1600 core. Due to
limitations in the ISA the BMU cannot be employed
concurrently with other parts of the processor, which
limits performance. Thus, current performance enhanced
DSPs either require a complete processor redesign as in
the TI case or architectural improvements cannot be
fully exploited by the ISA.
This paper describes, how datapath add-ons can be
implemented into architecture by avoiding ISA redesignThis work was sponsored in part by the Deutsche Forschungsgemein-

schaft (DFG) within the Sonderforschungsbereich (SFB) 358.



at no performance loss. To show the applicability, in Sec-
tion 2 we analyze the RPE-LTP speech coding algorithm
used in the GSM vocoder for choosing the appropriate tai-
lored or replicated datapaths. In Section 3, a structural
approach for designing the suitable ISA is given. In Sec-
tion 4, results for the selected algorithm are presented.

2. ALGORITHM-ARCHITECTURE
INTERACTION

To demonstrate how algorithm structures can be exploited
by architectural enhancements we chose the RPE-LTP
speech coding algorithm used in the GSM vocoder [4] for
two reasons. First, it contains typical signal processing
algorithms such as filters of different lengths, auto- and
cross-correlations, lattice IIR and FIR, etc. Furthermore, it
is a widely accepted benchmark algorithm.

A.  Analyzing Algorithms

At the first stage we analyzed how different datapath add-
ons can be employed by the overall GSM full-rate algo-
rithm. Starting with a basic architecture we computed a
cycle-count (measured in Million Instructions Per Second
(MIPS)). This cycle-count approximately corresponds to
cycle-counts found in current high-end DSP solutions
such as TCSI’s Lode and TI’s Lead C54x. Based on this
cycle-count in table 1 the MIPS requirement of the major
algorithms are shown. 

To increase the performance we added datapath exten-
sions to the architecture as shown in Fig. 1. Starting with
the cycle-count of the basic architecture we estimated the
impact of adding specialized units for input-scaling, out-
put-scaling, and division, a tailored MAC unit computing
a 31 by 16-bit multiplication, and one or three additional
MAC units. We found specialized scaling-units not being
able to improve the overall performance. The division-
operation, though very expensive in terms of cycle-
counts, is only moderately used in the algorithm [5].
Implementing a 31 by 16 MAC functionality can save
approximately 6% of the MIPS and can be folded into a
existing MAC unit to save cost. Implementing a dual-
MAC reduces the MIPS count significantly by 30%. Since
dual-MAC solutions already exist, e.g. by [7] or by [6],

Algorithm  appr. MIPS Requirement

1-Mac-Arch. 4-MAC-Arch.

Lattice-FIR 0.27 0,054

Lattice-IIR 0.16 0,081

Cross-Correlation 0.72 0,222

FIR 0.13 0,046

Remainder 0.52 0,44

Table 1: Major Algorithms in GSM-Fullrate

we took a step beyond by implementing a quadruple-
MAC which can save 47% of the MIPS count.

B.  Architecture

To be comparable with current DSP solutions, we
implemented an architecture with a dual-ported RAM.
Fig. 2 shows the blockdiagram of the final datapath.
Analyzing particularly the major algorithms (table 1)
of the GSM-Fullrate we found two memory-accesses
per cycle to be sufficient to feed up to five arithmetic
units with data. In order to exploit special properties
found in digital signal processing algorithms we imple-
mented a 9-entry ring-buffer, which both reduces mem-
ory I/O operations and provides the necessary input
delay required in DSP algorithms [7].
For independent usage we separated ALU from MAC
units, e.g. to perform scaling and auto-correlation in a
pipelined fashion - scaling input-values before per-
forming multiplications - and thus employing both
units in parallel. Furthermore, the 31 by 16 multiplica-
tion functionality was added to one MAC unit. Finally,
our architecture incorporates a 16 entry program cache,
a pipelined data memory and a pipelined instruction
decoder, resulting in a instruction pipeline of variable
length.

3. STRUCTURAL APPROACH FOR ISA DESIGN

Controlling the pipeline mainly incorporates resolving
hazards. In a data-stationary CISC ISA pipeline haz-
ards must be resolved by hardware [6]. Thus, if the
instruction set is modified, both the instruction decoder
and the hazard resolving hardware must be changed. To
allow the programer or compiler to control the pipeline,
time-stationary ISAs are applied as in Lucent‘s
DSP1618. 

 Fig. 1.  MIPS reduction by different datapath add-ons
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A.  ISA-Architecture Interaction

As mentioned above, architectural enhancement can be
achieved either by adding a new datapath, such as the
ACS unit, or by adding new functionality to an existing
datapath, e.g. by folding the 31 by 16 multiplication or
Galois Field Arithmetic into an existing MAC [9]. If the
datapath should be controlled independently, the time-sta-
tionary instruction word must be expanded in order to
orthogonalize the instruction set. This leads to the very
long instruction word (VLIW) ISA.
The VLIW ISA is already recognized as a good candidate
for high performance processors, e.g. used by the Phillips
TriMedia processor [10]. However, VLIW ISA comprises
two main disadvantages. First, modifying the hardware
architecture requires a change in the instruction word.
Thus, the original VLIW ISA is not code compatible,
which is a typical disadvantage against a CISC ISA. How-
ever, code compatibility achieved by the development
from TI’s C1x and C2x to C5x could not be attained by
developing the C54x. 
The second disadvantage of VLIW is code size explosion.
Several methods for limiting code size have been sug-
gested [10], [11]. For usage in DSP we proposed a Tagged
VLIW (TVLIW) scheme [6]. 

B.  TVLIW-ISA

By classifying DSP code into in-line and in-loop code dif-
ferent behavior can be observed. While in-loop code
requires the full VLIW‘s functionality, in-line code,
although requiring the biggest part of the program mem-
ory, cannot exploit parallelism. Thus, TVLIW supports
different requirements of in-line and in-loop instructions
by assembling the actual instruction word dynamically. A
very long instruction word (VLIW) consists of a number
of functional unit instruction words (FIW). Each FIW
controls the associated function unit (FU) independently
from the remaining FIWs. The idea of the TVLIW scheme
is to assemble the actual VLIW out of limited number of

FIWs. If the full VLIW‘s functionality is required, this
assembling may require several cycles. However, these
instructions mainly occur within loops. With the help of
a loop cache, this overhead is only necessary during the
first iteration. With the help of this TVLIW scheme, an
existing architecture can be expanded by datapath add-
ons without requiring an ISA redesign. 

4. RESULTS

Implementing the GSM full-rate algorithm we focused
on both the effect of implementing the TVLIW scheme
in comparison to a conventional VLIW approach and
performance results applying a quadruple-MAC archi-
tecture.

A.  Instruction Set Architecture

For constructing the ISA by the TVLIW scheme we
chose 13 classes of function units (table 2), each requir-
ing an 8 bit wide instruction word, resulting in a 26 bit
TVLIW instruction word.In contrast, the DSP design
given in [5] requires a 42 bit instruction word controlling
a less parallel hardware. For coding the complete

algorithm, consisting of both the encoder and decoder

 ISA Groups ISA FUs #

Program Control
Instruction Words

• Program Control, 
• Loop, 
• Short Immediate, 
• Long Immediate.

4 

Arithmetic/Logic
Instruction Words

• ALU, 
• MAC (4 x).

1 + 4 

Load/Store
Instruction Words

• Load/Store (2 x),
• Address 
Generation (2 x).

2 + 2

Total number of ISA FUs 13.

Table 2: Functional Units of Instruction Word

 Fig. 2.  Processor architecture
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part, less than a 1 K-word program memory was required
such as in the DSP 56301 implementation, but coding an
orthogonal instruction set. The algorithm was imple-
mented on a C++ simulator allowing us to model the par-
allelism of a TVLIW architecture.

B.  Performance Results

In spite of the small 16-entry program cache which often
holds inner loops only, we measured a 90%-usage for the
complete algorithm. In the remaining 10% performance-
loss of TVLIW is neglegable, since either a limited num-
ber of functional units is required or the pipeline is filled
or emptied. This is shown in Fig. 3 for the main algo-
rithms from table 1 in detail. Due to a special mechanism
of TVLIW cycles for filling or emptying the pipeline can
be used for reading additional parts of the actual VLIW
from the program memory indicated by the light grey
area. Once the pipeline is filled the whole VLIW perfor-
mance can be exploited indicated by the dark grey area.
The actual cycles spent for assembling the VLIW word -
indicated by the black bars - are almost neglegable.
Applying a quadruple-MAC solution the MIPS require-
ment of the major algorithms can be cut almost by 4 as
shown in table 1.
By the given architecture and ISA we could reduce the
GSM 6.10 full-rate encoder and decoder to 0,85 MIPS
which is 5 times faster than the MIPS requirements of a
standard DSP such as Motorola’s DSP65301 [12].

5. CONCLUSIONS AND FUTURE WORK

Taking the GSM full-rate algorithm we showed a struc-
tural approach for designing performance enhanced signal
processors. By adding datapath add-ons the proposed
architecture requires less than one MIPS, cutting the
MIPS count of a basic architecture by 2 and of a standard

DSP by 5. However, the main intention was not to out-
perform standard DSPs, but to show how hardware
extensions such as a quadruple-MAC solution can be
added to a standard architecture without requiring a
complete redesign. Thus, by applying the proposed
method, adding a datapath does not influence the over-
all architecture and ISA. This can be achieved by
applying the tagged VLIW (TVLIW) scheme.
In future work we will further analyze the DSP archi-
tecture in order to get detailed insight into gate counts,
cost of datapath extensions, possible clock rates etc.
Furthermore, compiler methods which already exist
will be applied to avoid assembly coding. 
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 Fig. 3.  Cycle distribution of major algorithms
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